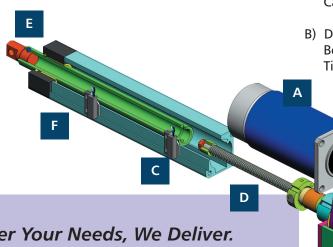
Linear Actuator Product Guide

Sold & Serviced By:

ELECTROMATE

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com



More solutions from us means more options for you.

At ITT Torque Systems; our aim has always been to offer our customers the broadest range of solutions. Experience has taught us that each application is unique, which is why we strive to ensure that the linear actuator you choose from us is uniquely suited to your needs. Our competitors may stack their shelves with actuators and hardware, but we go much further by filling ours with engineered solutions. By doing so, you have at your disposal just about any type of solution you could require, from simple integration components such as brakes, gears and limit switches, to elaborate breakthrough designs.

Our Custom Engineered MS Series Linear Actuators Can Include:

- A) Brush and Brushless Servomotors **Customer Supplied** Motors Cabling
- B) Direct Drive Belt Drive, Multiple **Timing Ratios**
- C) Linear Potentiometers Magnetic Limit Switches Brakes
- D) Acme Screws with Bronze or Delrin* Nuts **Ball Screws**
- E) Incremental Stroke Lengths IP 65 Environmental Sealing
- F) Inline & Parallel Mounting Multiple Front & Rear **Mounting Options**

Whatever Your Needs, We Deliver.

We make choosing the correct solution an enjoyable process. Our expertly trained sales force will work closely with you so they can gain a thorough understanding of your specific application. Thus enabling them to determine how to create the best solution for you. Once that judgment has been made, our application development engineers step in to ensure that you receive a reliable, high-quality working solution. When all is said and done, you get just what you need because ITT Torque Systems will design a product to fit your application — rather than altering your application to fit our product.

Benefit From Our Vast Selection and Expertise.

For over three decades, ITT Torque Systems has developed many innovative solutions to support our customers' needs for linear actuators. Today, the flexibility of the MS Series product line enables our engineering staff to size virtually any screw, nut and motor combination. We can also combine that flexibility with multiple rod end and end mounting designs to help meet your application, regardless of its uniqueness.

MS Series Platforms

MS Standard Design Features:

- 100% Duty Cycle Ball Screws
- 60% Duty Cycle Acme Screws
- Stroke Length Up to 30 in.
- (91.5 cm) 1 in. (25.4 mm) increments
- Accuracy to 0.0005 in. (0.013 mm)
- Durable Aluminum Body
- Corrosion Resistant Stainless Steel Rod
- Protective Rod Wiper
- End of Stroke Bumpers

Rigid Application Development Process

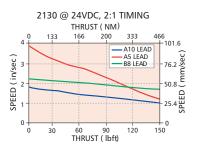
- Application Review
- Motion Profile Analysis
- FEA, 3D Modeling & Computer Simulation
- Prototype Design
- Performance Verification

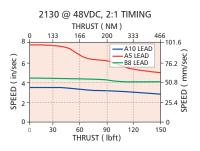
Plat	Platform MS 65																					
Gene	eral Ca	pabilities						1:1 Timing	, Ratio Per	rforma	nce Da	Data										
Max Stroke		Available Screws		Max Des Thrus		Max D Spe		Screw Type	Thrus	st	Sp	eed	Tested Motor	Toro	que							
in.	mm	Acme	Ball	lb. Force	N	in/sec	mm/ sec		lb. Force	N	in/sec	mm/sec		ozin.	mNM							
5.9 150		A2, A4	MB1	65	290	10	254	A4	65	290	10	254	AC Servo	9	63.7							
		A16, A20						A16	65	290	10	254										

Plat	form	MS 150																
Gene	eral Ca	pabilities	5					2:1 Timing Ratio Performance Data										
Max Stroke		Available Screws			Max Design Thrust		esign eed	Screw Type	Thrust		Speed		Tested Motor	Tord	que			
in.	mm	Acme	Ball	lb. Force	N	in/sec	mm/ sec		lb. Force	N	in/sec	mm/sec		lbin.	NM			
10	254	A2, A5	B8	150	667	30	762	A2	150	667	12.4	315						
		A10						A5	150	667	4.2	107	D1 4D 2222D	_	0.57			
								A10	150	667	2.3	58	BMR 2202D	5	0.57			
								B8	150	667	2.9	74						

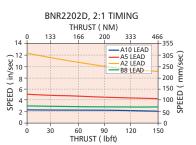
Pla	Platform MS 400																		
Gen	eral C	apabiliti	es					2:1 Timing Ratio Performance Data											
Max Stroke		Available Screws		Max Design Thrust		Max Design Speed		Screw Type	Thrust		Speed		Tested Motor	Torq	lue				
in.	mm	Acme	Ball	lb. N ir Force		in/sec	mm/ sec		lb. Force	N	in/sec	mm/sec		lbin.	NM				
30	762	A2.7	B2, B5	400	1780	30	762	A2.7	400	1780	10.0	254							
		A5, A10						A5	400	1780	5.5	140	D1 4D 2222D	_	0.57				
							A10	400	1780	2.7	67	BMR 2202D	5	0.57					
								B2	400	1780	12.4	315							
								B5	400	1780	5.6	142							

ŀ	'lat	torm	MS 800																
G	ien	eral C	apabilitie	s					2:1 Timing Ratio Performance Data										
	Max Stroke		Available Screws		Max De Thrus		Max Design Speed		Screw Type	Thrust		Speed		Tested Motor	Torc	que			
i	n.	mm	Acme	Ball	lb. Force	N	in/sec	mm/ sec		lb. Force	N	in/sec	mm/sec		lbin.	NM			
3	30	762	A2, A2.7	B2, B5	800	3558	30	762	A2.7	800	3560	7.3	185						
			A5, A10						A5	800	3560	3.9	99	DND 2045	47	F 42			
									A10	800	3560	1.9	48	BNR 3045	47	5.13			
									B2	800	3560	9.7	246						
									B5	800	3560	3.9	99						

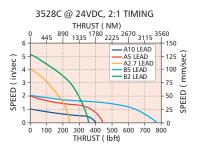


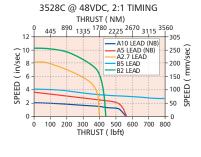

Typical Velocity Thrust Profiles - Many Others Available

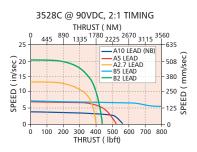

MS65

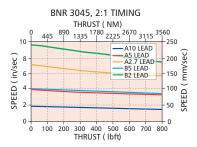


MS150

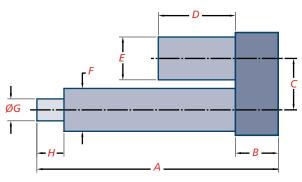


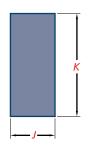



MS400

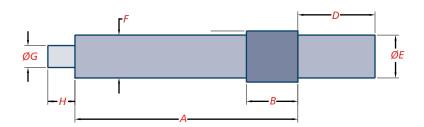


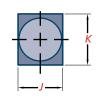
MS800





Today, the flexibility of ITT Torque Systems linear actuator product line enables our engineering staff to size virtually any screw, nut and motor combination.





Motor Pa	Motor Paralles Mount Dimensions																			
	A		В		С		D		E		F		ØG		Н		J			К
	inches	m	inches	mm	inches	mm	inches	mm	inches	mm	inches	mm	inches	mm	inches	mm	inches	mm	inch- es	mm
MS 65	3.79 + S	96.3 + S	0.94	23.9	1.13	28.7	2.52	64.0	0.98	24.9	1.02	25.9	0.47	11.9	0.44	11.2	1.00	25.4	2.19	55.6
MS 150	7.29 + S	185.2 + S	1.44	36.6	2.32	58.9	5.67	144.0	2.25	57.2	1.5	38.1	0.75	19.1	0.91	23.1	2.25	57.2	4.81	122.2
MS 400	7.82 + S	198.6 + S	1.63	41.4	2.32	58.9	5.67	144.0	2.25	57.2	2.25	57.2	1.00	25.4	0.91	23.1	2.25	57.2	4.81	122.2
MS 800	8.19 + S	208.0 + S	2.00	50.8	3.30	83.8	6.4	162.6	3.38	85.9	2.25	57.2	1.00	25.4	0.91	23.1	3.38	85.9	7.00	177.8

^{*} Retracted Length

S = Stroke Length

Motor In-l	Motor In-Line Mount Dimensions																	
	,	В	3	ı)	Ø	E	F		ØG		Н		J		K		
	inches	mm	inches	mm	inches	mm	inches	mm	inches	mm	inches	mm	inches	mm	inches	mm	inches	mm
MS 65	6.20 + S	157.5 + S	1.24	31.5	2.52	64.0	0.98	24.9	1.02	25.9	0.47	11.9	0.44	11.2	1.00	25.4	1.00	25.4
MS 150	4.94 + S	125.5 + S	2.06	52.3	5.55	141.0	2.27	57.7	1.5	38.1	0.75	19.1	0.91	23.1	2.25	57.2	2.25	57.2
MS 400	7.53 + S	191.3 + S	2.25	57.2	5.67	144.0	2.25	57.2	2.25	57.2	1.00	25.4	0.91	23.1	2.50	63.5	2.50	63.5
MS 800	8.88 + S	225.6 + S	2.69	68.3	6.40	162.6	3.38	85.9	2.25	57.2	1.00	25.4	0.91	23.1	3.38	85.9	3.38	85.9

^{*} Retracted Length

S = Stroke Length