
TORQUEMASTER®

Performance Benefits

CMC Torque Systems specializes in the design of high performance brush servo motors that provide efficiency, flexibility of application, and a long and trouble-free service life. Our TORQUEMASTER® 5300 series is no exception.

With fast response, accurate control and high torque-to-inertia ratios, you can count on the TORQUEMASTER 5300 Series of brush servo motors to provide smooth operation throughout a full speed range. The 5300 Series delivers smooth and superior low speed performance, low cogging and maximum power ratings with low thermal resistance for high speed performance. In addition, with maximum torque in a smaller package, you can count on better pricing for a better overall value.

When integrated with high performance brush amplifiers, TORQUEMASTER 5300 Series brush servo motors provide effective and highly efficient motion control solutions for a wide range of applications—including factory automation, packaging, robotics, machine tools, medical instrumentation and more.

Design Features

TORQUEMASTER 5300 Series brush servo motors are rated from 25 lb.-in. to 48 lb.-in. with speeds and torque stability up to 3000 RPM. They utilize the latest in high performance permanent magnet technology, and are available in eight standard windings (as well as custom windings) to meet your most demanding applications.

Each brush servo motor in the TORQUEMASTER 5300 Series is ruggedly designed and manufactured for reliable performance.

Motors can be customized to fit your exact application with tachometers, encoders, brakes and other options.

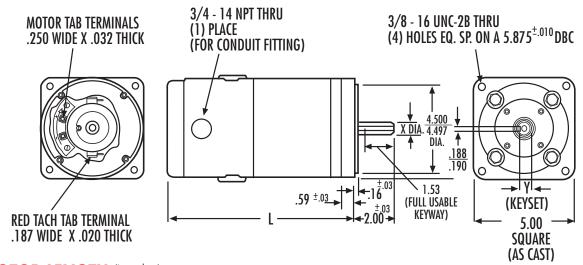
BRUSH SERVO MOTORS 5300 SERIES

Series 5300, is a high performance, permanent magnet brush-type DC servo motor for use in various industrial direct drive or geared servo systems

- Rugged industrial construction
- Continuous torque ratings up to 48 lb.-in.
 —with speeds up to 3,000 RPM
- Peak torque ratings up to 350 lb.-in.
- Low cogging for smooth performance
- IP65 Sealing available
- Superior low speed performance
- Numerous custom options available
- Available with 8 standard windings
- 4.5 inch diameter motors available in three motor lengths
- Inertia ratings from .0075 Lb-in-sec² to .015 Lb-in-sec²
- CE / UL

TORQUEMASTER°

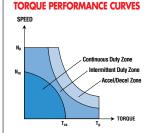
BRUSH SERVO MOTOR CHARACTERISTICS


	BRUSH SERVO MOTOR CHARACTERISTICS					
	SYMBOL		UNITS	5330	5350	5370
	T _C	Cont. Torque	Lb-In	25	37.5	48
	T _P	Peak Torque	Lb-In	150	250	350
	T _F	Static Friction	Lb-In	.93	1.2	1.5
	F _i	Viscous Friction	Lb-In/KRPM	.69	.81	.94
	$\overline{T_R}$	Cogging Torque	Lb-In	.25	.43	.50
	J_{M}	Inertia	Lb-In-sec ²	0.0075	0.0112	0.0150
	R _{TH}	Thermal Res	Deg C/watt	1.3	1.1	0.9
	T _{TH}	Thermal Time	Minute	32	44	49
	t _m	Mech Time	Millisec	6.1	4.8	4.7
	t _e	Elect Time	Millisec	2.5	2.7	3
	F _C	Commutation (41Bar)	Factor	41000	66000	89000
	Wt	Weight	Lbs	22	30	38
		ues at 25°C Ambient.	103			
VINDING	riote. Ali vai	ues at 25 C Ambient.				
A	K _T	Torq. Sens.	Lb-In/Amp	1.3	2.1	2.8
•	$\frac{RT}{R_A}$	Arm. Resis.	Ohms	0.14	0.2	0.27
	-	Back E.M.F	Volts/KRPM	15.1	24.4	32.9
	K _V		Watts	2000	2000	2000
	F _C /K _T	P _b				
•	K _T	Torq. Sens.	Lb-In/Amp	1.7	2.7	3.6
	R _A	Arm. Resis.	Ohms	0.25	0.33	0.44
	K _V	Back E.M.F	Volts/KRPM	19.6	31.4	42.1
	F _C /K _T	P _b	Watts	1547	1553	1561
	K _T	Torq. Sens.	Lb-In/Amp	2.0	3.3	4.4
	R _A	Arm. Resis.	Ohms	0.38	0.51	0.67
	K _V	Back E.M.F	Volts/KRPM	24.0	38.4	51.7
	F_C/K_T	P_b	Watts	1262	1269	1271
)	K _T	Torq. Sens.	Lb-In/Amp	2.6	4.2	5.5
	R _A	Arm. Resis.	Ohms	0.59	0.59	1.1
	K _V	Back E.M.F	Volts/KRPM	30.3	49.1	65.0
	F_C/K_T	P_b	Watts	1000	992	1011
	K _T	Torq. Sens.	Lb-In/Amp	3.3	5.3	7.2
	R_A	Arm. Resis.	Ohms	0.95	1.3	1.74
	K _V	Back E.M.F	Volts/RPM	39.2	63.2	85.0
	F_C/K_T	P _b	Watts	774	772	774
	K _T	Torq. Sens.	Lb-In/Amp	4.1	6.5	8.8
	R_A	Arm. Resis.	Ohms	1.56	2	2.7
	K _V	Back E.M.F	Volts/KRPM	48.0	76.5	103.5
	F_{C}/K_{T}	P _b	Watts	631	638	636
,	K _T	Torq. Sens.	Lb-In/Amp	5.2	8.3	11.1
G	$\frac{R_1}{R_A}$	Arm. Resis.	Ohms	2.35	3.3	4.3
	K _V	Back E.M.F	Volts/KRPM	61.3	97.5	131.5
	$\frac{KV}{F_C/K_T}$	P _b	Watts	494	500	500
· · · · · · · · · · · · · · · · · · ·						14.4
1	K _T	Torq. Sens.	Lb-In/Amp	6.7	10.6	
	R _A	Arm. Resis.	Ohms	3.8	5.3	7
	K _V	Back E.M.F	Volts/KRPM	79.1	125.6	170.0
	F_{C}/K_{T}	Pb	Watts	383	388	387

For custom designs please consult factory.

All specifications subject to change without notice.

MECHANICAL SPECIFICATIONS*



MOTOR LENGTH (In inches)

MOTOR	5330	5350	5370
Standard Motor/Tach (or Motor only)	9.42	11.42	13.42
Dimension L (with Shaft Encoder)	12.80	14.80	16.80
Dimension X	0.625 / 0.624	0.625 / 0.624	0.875 / 0.874
Dimension Y	0.517 / 0.502	0.517 / 0.502	0.771 / 0.756

*All specifications are for reference only. Please consult the factory for certified dimension drawings.

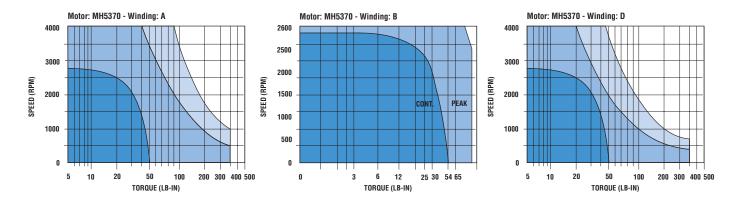
Standard Direction of Rotation: CCW rotation viewed from shaft end with red motor terminal positive with respect to black motor terminal.

NOTE: Continuous torque specifications obtained with motor mounted to an $8.5''x12''x\ 0.5''$ aluminum plate at $25\ C^\circ$ ambient.

Typical values are within $\pm 10\%$ of rating.

STANDARD WINDING SPEED/TORQUE CURVE DATA FOR SIZING A SERVO MOTOR

Nm = Maximum speed, continuous operation


Np = Peak speed, acceleration/deceleration and intermittent duty

Tcs = Continuous stall torque

Tp = Peak torque

All specifications subject to change without notice.

TORQUE PERFORMANCE CURVES

TORQUE SPEED CURVES OF OTHER WINDINGS AVAILABLE, CONSULT FACTORY.

BRUSHSERVO MOTORS

5300 SERIES

VOLTAGE EQUATION FOR MOTORS

Volts =	K _T x RPM +	T x R _A	+	V_{B}
Where:	1,350	K_T		

 K_T = torque constant, oz.-in. per amp T = load torque plus motor friction torque-oz.-in. R_Δ = armature resistance + brush resistance

 V_B° = brush voltage drop = 2 volts Note: For armature resistance at maximum temperature rating, multiply catalog value of R by 1.5

MOTOR TORQUE RATING VS. SPEED

$$T_{R} = .94K_{T} \begin{bmatrix} \frac{130}{R_{TH}} - \frac{RPM \times T_{F}}{1,350} - \frac{RPM^{2} \times F_{i}}{1,350,000} \end{bmatrix}^{1/2} - T_{F} - \begin{bmatrix} \frac{RPM \times F_{i}}{1000} \end{bmatrix}$$

Where:

 T_R = rated torque (25°C ambient)-oz.-in.

 K_T = torque sensitivity-oz.-in./amp

 $R_A = armature resistance$

RPM = revolutions per minute

 T_F = static friction torque-oz.-in.

F_i = viscous friction-oz.-in.

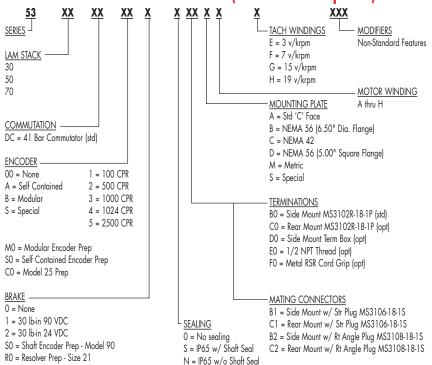
R_{TH} = thermal resistance

To Find: Higher Torque Rating for Intermittent Duty

Let A = $\frac{\text{total cycle time in seconds}}{\text{thermal time constant of motors in seconds}}$

Let B = "on" time in seconds per cycle
thermal time constant of motor in seconds

then with T_R = Rated torque for 100% duty and T_{MAX} = Rated torque for intermittent duty


 $T_{MAX} = T_{R} x \left[\frac{1 - e^{A}}{1 - e^{B}} \right]^{1/2}$

Customize The 5300 Series To Your Exact Requirements

To satisfy various applications with cost-effective solutions, 5300 Series motors are readily available with a wide range of standard capabilities. Final designs are often the result of cooperative efforts between the customer's engineering department and CMC. For assistance, call your local CMC distributor or CMC direct. We look forward to meeting your custom requirements.

TORQUEMASTER®

ORDERING INFORMATION (For Standard Options)

Ask About Other Motion Control Solutions & Capabilities From Torque Systems

- Brushless TorqueMaster® Servo Motors
- PowerMaster® Amplifiers
- Shaft-mounted DataTorque™ Encoders
- Gearboxes/Brakes
- Expert application engineering
- Complete repair & refurbishing services

