

Linear Motion Systems

ETHOMSON Linear Motion. Optimized.'

Thomson - the Choice for Optimized Motion Solutions

Often the ideal design solution is not about finding the fastest, sturdiest, most accurate or even the least expensive option. Rather, the ideal solution is the optimal balance of performance, life and cost.

Quickly Configure the Optimal Mechanical Motion Solution

Thomson has several advantages that makes us the supplier of choice for motion control technology.

- Thomson owns the broadest standard product offering of mechanical motion technologies in the industry.
- Modified versions of standard product or white sheet design solutions are routine for us.
- Choose Thomson and gain access to over 70 years of global application experience in industries including packaging, factory automation, material handling, medical, clean energy, printing, automotive, machine tool, aerospace and defense.
- As part of Danaher Corporation, we are financially strong and unique in our ability to bring together control, drive, motor, power transmission and precision linear motion technologies.

A Name You Can Trust

A wealth of product and application information as well as 3D models, software tools, our distributor locator and global contact information is available at www.thomsonlinear.com/contact_us. Talk to us early in the design process to see how Thomson can help identify the optimal balance of performance, life and cost for your next application. And, call us or any of our 2000+ distribution partners around the world for fast delivery of replacement parts.

The Danaher Business System

The Danaher Business System (DBS) was established to increase the value we bring to customers. It is a mature and successful set of tools we use daily to continually improve manufacturing operations and product development processes. DBS is based on the principles of Kaizen which continuously and aggressively eliminates waste in every aspect of our business. DBS focuses the entire organization on achieving breakthrough results that create competitive advantages in quality, delivery and performance - advantages that are passed on to you. Through these advantages Thomson is able to provide you faster times to market as well as unsurpassed product selection, service, reliability and productivity.

Local Support Around the Globe

Table of Contents

Thomson 5
Linear Motion Systems at Work 6
Simple Product Selection with Linear Motioneering ${ }^{\text {® }}$ 7
Linear Motion System Group Selection Chart 8-9
Linear Motion Systems with Lead or Ball Screw Drive and Ball Guide.... 10
Overview 10-13
WM40S. 14-15
WM40D. 16-17
WM60D. 18-19
WM60S 20-21
WM60X. 22-23
WM80D. 24-25
WM80S 26-27
WM120D 28-29
WV60. 30-31
WV80. 32-33
WV120. 34-35
MLSM60D 36-37
MLSM80D 38-39
M55 40-41
M75. 42-43
M100 44-45
2HB10. 46-47
2HB20. 48-49
2RB12. 50-51
2RB16. 52-53
MS25. 54-55
MS33 56-57
MS46L 58-59
MS46B 60-61
Units with inch interface
2DB08. 62-63
2DB120. 64-65
2DB12J 66-67
2DB160 68-69
2DB16J 70-71
Linear Motion Systems with Ball Screw Drive and Slide Guide 72
Overview 72-73
M55 74-75
M75. 76-77
M100 78-79
Linear Motion Systems with Belt Drive and Ball Guide 80
Overview 80-81
WH40 82-83
WM60Z. 84-85
WM80Z, standard carriage 86-87
WM80Z, short carriage. 88-89
M55. 90-91
M75 92-93
M100 94-95
MLSM80Z 96-97
Sold \& Serviced By:
ELECTROMATE
Toll Free Phone (877) SERV098
Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com
Linear Motion Systems with Belt Drive and Slide Guide 98
Overview 98-99
M50 100-101
M55. 102-103
M75 104-105
M100 106-107
Linear Motion Systems with Belt Drive and Wheel Guide 108
Overview 108-109
WH50 110-111
WH80 112-113
WH120 114-115
MLSH60Z 116-117
Linear Lifting Units 118
Overview 118-119
WHZ50 120-121
WHZ80 122-123
Z2. 124-125
Z3.. 126-127
Linear Rod Units 128
Overview 128-129
WZ60. 130-131
WZ80 132-133
Accessories 135
Accessory Index 135
Mounting Kits 136-140
Cover and Protection Kits 141-144
Motors, Gears and Transmission Kits 145-164
Electrical Feedback Devices 165-176
Non Driven Units 177-181
Additional Technical Data 182
Additional Technical Data Tables 182-186
Drive Calculations 187-188
Deflection Calculations 189-190
Ordering Keys 191
Keys for Units with Lead or Ball Screw Drive and Ball Guides.. 191-199
Keys for Units with Ball Screw Drive and Slide Guides 200
Keys for Units with Belt Drive and Ball Guides 201-204
Keys for Units with Belt Drive and Slide Guides 205
Keys for Units with Belt Drive and Wheel Guides 206-207
Keys for Linear Lifting Units 208
Keys for Linear Rod Units 209
Keys for Non Driven Units 210-211
Terminology 212
Basic Linear Motion System Terminology 212
Glossary. 213
A - Belt D 213
Belt G-C 214
D - E. 215
G - M 216
N - Sc. 217
Si-W. 218

Thomson

The optimal balance of performance, life and cost

The unmatched breadth of the Thomson linear motion system product line comes from the consolidation of three world-reknowned brands: Thomson, Neff and Tollo. We are product innovators with decades of application experience. Unbiased ownership of the multiple motion system technologies enables Thomson to provide you with the optimal balance of performance versus installed cost for your application.

Thomson introduced the first ball screw actuator into an aviation application in 1939 and invented the anti-friction Linear Ball Bushing ${ }^{\oplus}$ Bearing in 1945. Thomson has been a market leader with an increasing portfolio of linear motion technologies ever since.

Founded in 1905, Neff offered products for the linear motion market and, over the decades, became a market leader in ball screw technology. The first linear motion system from Neff was presented in 1981 at the FAMETA show in Stuttgart.

Tollo began in 1981 as a lifting equipment manufacturer. The product line grew rapidly thereafter and, in 1982, Tollo presented their first linear motion system at the Technical Fair in Stockholm.

Thomson has consolidated the most competitive and complementary products from each brand into the most advanced, most comprehensive product portfolio available today. The range covers the smallest and most compact linear motion systems to the biggest and most robust. Our wide range of guide and drive systems can be configured economically and can also work in harsh environments, at high speeds, and in high precision applications.

Thomson is linear motion, optimized.

Linear Motion Systems at Work

Application Examples

Thomson Linear Motion Systems can be used in almost all industries . The breadth of our range makes it possible to find the optimum solution for most applications imaginable. If the standard range is not enough, Thomson is happy to discuss a custom solution that meets your needs. Below is a small selection of applications where linear motion systems have been used succesfully. Contact us and we can show you many, many more.

Handling

Linear motion systems are ideal for handling applications. Thomson has units suitable for the harsh environments in food and paper industries to the rigorous cleanliness demands found in the medical and electronics industries.

Transportation and transfer
Whenever you may need to move something from one place to another a linear motion system can be the answer. Here a moulding machine is fed and emptied at high speed.

Medical and laboratory

In this application a robot made of linear motion systems is used to pick samples from test tubes of different heights. Thomsons has the small, quiet, quick and accurate units you need to build this type of equipment.

Packaging, filling and dispensing
To fill, close, stack, label or print on boxes or other containers of almost any size and weight is easily done with linear motion systems.

Simple Product Selection with Linear Motioneering ${ }^{\circledR}$

On-Line Product Selection

The Linear Motioneering sizing and selection tool is designed to make it simple to choose the right linear motion system for your application. Linear Motioneering is very easy to use, just enter the basic paramaters for your application and watch as Linear Motioneering does all the work. Linear Motioneering calculates application parameters through a comprehensive set of algorithms and compares your results to our product database to determine an optimized solution set.

To determine which linear motion system is best suited for your application you just enter the application parameters in seven simple steps into Linear Motioneering. Once a product solution is selected, choose from a wide assortment of accessories, motors, and motor mounts.

The program will output a 2D drawing or an interactive 3D model, list prices, delivery times, and ordering information. In your account you can see your quote history. Please visit www.linearmotioneering.com for more information.

Seven simple steps

1. Visit www.linearmotioneering.com
2. Create an account
3. Enter the system orientation
4. Enter the positioning requirements
5. Enter any environmental conditions
6. Enter the load and the forces
7. Enter the move profile requirements

Outputs

1. 2D drawings or interactive 3D models
2. List prices
3. Delivery times
4. Ordering information

Linear Motion System Group Selection Chart

How to select appropiate product group

Thomson linear motion systems offers two drive options (screw or belt drive) and three carriage guidance options (ball, slide or wheel guides). The chart below provides reference to the ideal product combination based on the general application type.

Application Type Group 1
Instrumentation and other low-load applications. Repeatability and/or spatial constraints may be critical.
- Small-scale material handling
- Medical instrumentation
- Lab automation
- Vending machines

Application Type Group 2

Economical point-to-point transport motion. Speed and/or environmental protection may be critical.

- Packaging
- Filling and dispensing
- Factory automation
- Material handling
- Printing and scanning
- Food processing

Application Type Group 3

Motion with tighter accuracy requirements. Stiffness and rigidity may be critical.

- Machine tool material handling
- Machine tool automation
- Test and measurement
- Inspection equipment
- Automotive assembly

Oil Free Fax (8777) Servivos

Linear Motion System Group Selection Chart

How to select appropiate product group

How to use the selection chart

1. Chose the one of the three general application type groups that match your application the best.
2. Move right in the chart until you identified a possible unit type for your needs.
3. Look up the unit type in the catalog and see if there is a size or version among them that match.
4. If you find a match, go to step 5. If not, go back to the chart and identify the next possible unit type and repeat.
5. Confirm the choice by performing the necessary calculations. The Linear Motioneering Sizing and Selection Tool or the Thomson customer support team can help you with this.

ELECTROMATE

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guide

Overview

PowerLine WM

Features

- Can be installed in any orientation
- Patented guide system
- Patented self-adjusting plastic cover band
- Patented screw support system

Parameter	WM40S	WM40D	WM60D	WM60S	WM60X	WM80D	WM80S	WM120D
Profile size (width \times height) [mm]	40×40	40×40	60×60	60×60	60×60	80×80	80×80	120×120
Stroke length (Smax), maximum [mm]	2000	2000	11000	5000	10340	11000	5000	11000
Linear speed, maximum [m/s]	0,25	0,25	2,5	2,5	0,25	2,5	2,5	2,0
Dynamic carriage load (Fz), maximum [N]	600	600	2000	1400	2000	3000	2100	6000
Remarks	single ball nut	double ball nuts	double ball nuts	single ball nut	left/right screw	double ball nuts	single ball nut	double ball nuts
Page	14	16	18	20	22	24	26	28

WM-Series Technical Presentation

Screw support

Patented screw support system permits high speeds at long stroke lengths while reducing the available stroke with a minimum.

Double ball nuts

Double pre-tensioned ball nuts improve the accuracy and allow re-tensioning, increasing the lifetime of the unit.

Central lubrication

One central lubrication point on the carriage services the entire unit resulting in a minimum maintenace requirement.

Ball guides

Integrated patented ball guides with hardened steel tracks for optimum performance.

Ball cages

The balls in the ball guides are protected by a ball cage which ensures a long life.

Cover band

The patented self-adjusting cover band protect the unit from the penetration of dirt, dust and liquids.

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guide

Overview

PowerLine WV

Parameter		WV60	WV80	WV120	
Profile size (width \times height)	$[\mathrm{mm}]$	60×60	80×80	120×120	
Stroke length (Smax), maximum	$[\mathrm{mm}]$	11000	11000	11000	
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	2,5	2,5	2,0	
Dynamic carriage load (Fz), maximum	$[\mathrm{N}]$		-	-	-
Remarks		double ball nuts the units has no guides	double ball nuts the units has no guides	double ball nuts the units has no guides	
Page		30	32	34	

ForceLine MLSM

Features

- Can be installed in any orientation
- Patented self-adjusting plastic cover band
- Patented screw support system
- The units require external guides

Features

- Can be installed in any orientation
- Patented guide system
- Patented plastic cover band
- Patented screw support system

Parameter		MLSM60D	MLSM80D
Profile size (width \times height)	$[\mathrm{mm}]$	160×65	240×85
Stroke length (Smax), maximum	$[\mathrm{mm}]$	5500	5200
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	2,5	2,0
Dynamic carriage load (Fz), maximum	$[\mathrm{N}]$	6000	8000
Remarks		double ball nuts	
Page		36	double ball nuts

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guide

Overview

Features

- Can be installed in any orientation
- Self-adjusting stainless steel cover band
- Internal ball guides
- Wash down protected versions available

| Parameter | | M55 | M75 | M100 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Profile size (width \times height) | $[\mathrm{mm}]$ | 58×55 | 86×75 | 108×100 |
| Stroke length (Smax), maximum | $[\mathrm{mm}]$ | 3000 | 4000 | 6000 |
| Linear speed, maximum | $[\mathrm{m} / \mathrm{s}]$ | 1,6 | 1,0 | 1,25 |
| Dynamic carriage load (Fz), maximum | $[\mathrm{N}]$ | 400 | 1450 | 3000 |
| Remarks | | single ball nut | single ball nut | single ball nut |
| Page | 40 | 42 | 44 | |

2HB

Features

- Can be installed in any orientation
- High load capabilities
- Low profile height
- Preloaded ballscrew and bearing carriages offer high stiffness / rigidity
- Corrosion resistant options available.

Parameter		2HB10	2HB20	
Profile size (width \times height)	$[\mathrm{mm}]$	100×60	200×90	
Stroke length (Smax), maximum	$[\mathrm{mm}]$	1375	2760	
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	0,47	0,95	
Dynamic carriage load (Fz), maximum	$[\mathrm{N}]$		8000	34000
Remarks		bellows or shroud options available	bellows or shroud options available	
Page		46	48	

2RB

Features

- Can be installed in any orientation
- High load capabilities
- Low profile height
- Preloaded ballscrew and Super Smart bearing configuration provides stiffness / rigidity
- Corrosion resistant options available.

| Parameter | | 2RB12 | 2RB16 |
| :--- | :---: | :---: | :---: | :---: |
| Profile size (width \times height) | $[\mathrm{mm}]$ | 130×40 | 160×48 |
| Stroke length (Smax), maximum | $[\mathrm{mm}]$ | 1951 | 2815 |
| Linear speed, maximum | $[\mathrm{m} / \mathrm{s}]$ | 0,47 | 0,73 |
| Dynamic carriage load (Fz), maximum | $[\mathrm{N}]$ | 1760 | 5176 |
| Remarks | | bellows option available | |
| Page | | 50 | bellows option available |

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guide

Overview

MicroStage MS

Features

- Compact, lightweight package
- Stainless steel leadscrew with anti-backlash nut offers precise repeatability
- Segmented linear bearings provide smooth motion
- Corrosion resistant options available

Parameter		MS25	MS33	MS46L	MS46B
Profile size (width \times height)	$[\mathrm{mm}]$	50×25	60×33	86×46	86×46
Stroke length (Smax), maximum	$[\mathrm{mm}]$	705,5	704	821,3	821,3
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	0,85	1,02	0,83	0,83
Dynamic carriage load (Fz), maximum	$[\mathrm{N}]$	100	150	450	450
Remarks		bellows option available	bellows option available	bellows option available	bellows option available
Page		54	56	58	60

2DB

INCH INTERFACE

Features

- Integrated dual-rail, webbed shaft ideal for loading in all orientations
- Low-profile height
- Super Smart bushings with low friction for smooth motion
- Easy mounting
- Corrosion resistant options available

Parameter	2DB08	2DB120	2DB12J	2DB160	2DB16J
Profile size (width \times height) [in]	4.5×1.625	6×2.125	6×2.562	7.5×2.625	7.5×3.062
Stroke length (Smax), maximum [in]	41	63	63	84.5	84.5
Linear speed, maximum [in/s]	33.3	10.0	25.0	8.3	41.67
Dynamic carriage load (Fz), maximum [lbs]	336	2115	2115	3555	3555
Remarks	leadscrew driven	ballscrew driven integrated carriage	ballscrew driven modular carriage	ballscrew driven integrated carriage	ballscrew driven modular carriage
Page	62	64	66	68	70

WM40S

Ball Screw Drive, Ball Guide, Single Ball Nut

» Ordering key - see page 191
" Accessories - see page 135
" Additional data - see page 182

General Specifications

Parameter	WM40S
Profile size $(w \times h)[\mathrm{mm}]$	40×40
Type of screw	ball screw with single nut
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WM40S
Stroke length (Smax), maximum	$[\mathrm{mm}]$	2000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	0,25
Acceleration, maximum	$[\pm \mathrm{mm}]$	0,02
Repeatability	$[\mathrm{rpm}]$	3000
Input speed, maximum	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Operation temperature limits	$[\mathrm{N}]$	1000
Dynamic load (Fx), maximum	$[\mathrm{N}]$	450
Dynamic load (Fy), maximum	$[\mathrm{N}]$	600
Dynamic load (Fz), maximum	$[\mathrm{Nm}]$	10
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	30
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	30
Dynamic load torque (Mz), maximum	$[\mathrm{N}]$	100
Drive shaft force (Frd), maximum	$[\mathrm{Nm}]$	3
Drive shaft torque (Mta), maximum	$[\mathrm{mm}]$	12
Ball screw diameter (do)	$[\mathrm{mm}]$	5
Ball screw lead (p)	$[\mathrm{kg}]$	
Weight		
of unit with zero stroke of every 100 mm of stroke of each carriage	1,50 0,30 0,36	

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]
	0,3
1500	0,5
3000	0,8

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Critical Speed

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

WM40S

Ball Screw Drive, Ball Guide, Single Ball Nut

A1: depth 7
A2: lubricating nipple on both sides DIN3405 D 1/A

| Stroke length $(\mathbf{S m a x})[\mathrm{mm}]$ | A [mm] | B [mm] | C $[\mathbf{m m}]$ |
| :--- | :---: | :---: | :---: | :---: |
| $0-500(0-450)$ | 65 | 35 | $270(320)$ |
| $501-1100(451-1050)$ | 65 | 45 | $280(330)$ |
| $1101-2000(1051-1950)$ | 70 | 60 | $300(350)$ |

Values between brackets = for units with long carriage

Double Carriages

Parameter		WM40S
Minimum distance between carriages (L_{A})	[mm]	175
Dynamic load (Fy), maximum	[N]	900
Dynamic load (Fz), maximum	[N]	1200
Dynamic load torque (My), maximum	[Nm]	$L A^{\prime} \times 0,45$
Dynamic load torque (Mz), maximum	[Nm]	$L A^{\prime} \times 0,6$
Force required to move second carriage	[N]	4
Total length (L tot)	[mm]	Smax + C + L A

WM40D

Ball Screw Drive, Ball Guide, Double Ball Nuts, Long Carriage

» Ordering key - see page 191
" Accessories - see page 135
" Additional data - see page 182

General Specifications

Parameter	WM40D
Profile size $(w \times h)[\mathrm{mm}]$	40×40
Type of screw	ball screw with double nuts
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WM40D
Stroke length (Smax), maximum	$[\mathrm{mm}]$	1950
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	0,25
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	20
Repeatability	$[\mathrm{mm}]$	0,01
Input speed, maximum	3000	
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	1000
Dynamic load (Fy), maximum	$[\mathrm{N}]$	450
Dynamic load (Fz), maximum	$[\mathrm{N}]$	600
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	10
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	30
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	30
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	100
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	3
Ball screw diameter (do)	$[\mathrm{mm}]$	12
Ball screw lead (p)	$[\mathrm{mm}]$	5
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	$[\mathrm{kg}]$	

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]
	$0=5$
1500	0,4
3000	0,6

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Critical Speed

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

WM40D

Ball Screw Drive, Ball Guide, Double Ball Nuts, Long Carriage
METRIC \square (

A1: depth 6
A2: lubricating nipple on both sides DIN3405 D 1/A

A3: socket cap screw ISO4762-M5×12 8.8
A4: ENF inductive sensor rail kit (optional - see page 172)

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
0-500	65	35	320
501-1100	65	45	330
1101-2000	70	60	350

Double Long Carriages

ELECTROMATE

WM60D

Ball Screw Drive, Ball Guide, Double Ball Nuts

» Ordering key - see page 191
" Accessories - see page 135
" Additional data - see page 182

General Specifications

Parameter	WM60D
Profile size $(w \times h)[\mathrm{mm}]$	60×60
Type of screw	ball screw with double nut
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications		
Parameter		WM60D
Stroke length (Smax), maximum screw lead 5, 20 mm screw lead 50 mm	[mm]	$\begin{array}{r} 11000 \\ 5000 \end{array}$
Linear speed, maximum	[m/s]	2,5
Acceleration, maximum	[m/s ${ }^{2}$]	20
Repeatability	[$\pm \mathrm{mm}$]	0,01
Input speed, maximum	[rpm]	3000
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load (Fx), maximum	[N]	4000
Dynamic load (Fy), maximum	[N]	2000
Dynamic load (Fz), maximum	[N]	2000
Dynamic load torque (Mx), maximum	[Nm]	100
Dynamic load torque (My), maximum	[Nm]	200
Dynamic load torque (Mz), maximum	[Nm]	200
Drive shaft force (Frd), maximum	[N]	500
Drive shaft torque (Mta), maximum	[Nm]	35
Ball screw diameter (do)	[mm]	20
Ball screw lead (p)	[mm]	5,20,50
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{aligned} & 6,16 \\ & 0,65 \\ & 1,99 \end{aligned}$

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]		
	0,8	1,3	1,6
1500	1,4	2,0	2,4
3000	1,8	2,3	2,6

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information. Units with a profile length over 6300 mm consist of two profiles where the joint between the two profiles must be addequately supported on both sides.

Definition of Forces

Toll Free Fax (877) SERV099
Linear Motion Systems sales@electromate.com

WM60D

Ball Screw Drive, Ball Guide, Double Ball Nuts

X

A1: depth 11
A2: socket cap screw ISO4762-M6×20 8.8
A3: ENF inductive sensor rail kit (optional - see page 172)

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$0-695(0-505)$	115	65	$460(650)$
$696-1335(506-1145)$	165	115	$560(750)$
$1336-2075(1146-1885)$	185	135	$600(790)$
$2076-2780(1886-2590)$	210	160	$650(840)$

Values between brackets = for units with long carriage

Long Carriage

Parameter		WM60D
Carriage length	$[\mathrm{mm}]$	450
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	500
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	500
Weight	$[\mathrm{kg}]$	3,1

Double Carriages

Parameter		WM60D
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	335
Dynamic load (Fy), maximum	$[\mathrm{N}]$	4000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	4000
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 2$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 2$
Force required to move second carriage	$[\mathrm{N}]$	20
Total length (L tot)	$[m m]$	Smax $+\mathrm{C}+\mathrm{La}$
1 Value inmm		

A4: tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature $A 5$: can be changed over to one of the three alternative lubricating points by the customer

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$2781-3545(2591-3355)$	230	180	$690(880)$
$3546-4285(3366-4095)$	250	200	$730(920)$
$4286-5015(4096-4825)$	275	225	$780(970)$
$5016-11000(4826-10810)$	contact customer service		

[^0]
ELECTROMATE

WM60S

Ball Screw Drive, Ball Guide, Single Ball Nut, Short Carriage

» Ordering key - see page 191
" Accessories - see page 135
" Additional data - see page 182

General Specifications

Parameter	WM60S
Profile size $(w \times h)[\mathrm{mm}]$	60×60
Type of screw	ball screw with single nut
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WM60S
Stroke length (Smax), maximum	$[\mathrm{mm}]$	5000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	2,5
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	10
Repeatability	$[\mathrm{mm}]$	0,02
Input speed, maximum	3000	
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	2800
Dynamic load (Fy), maximum	$[\mathrm{N}]$	1400
Dynamic load (Fz), maximum	$[\mathrm{N}]$	1400
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	50
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	100
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	100
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	500
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	35
Ball screw diameter (do)	$[\mathrm{mm}]$	20
Ball screw lead (p)	$[\mathrm{mm}]$	$5,20,50$
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	$[\mathrm{kg}]$	3,80

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]		
	$p=5$	$p=20$	$p=50$
1500	0,7	1,0	1,4
3000	1,1	1,6	2,0

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

WM60S

Dimensions	Projection
METRIC	

Ball Screw Drive, Ball Guide, Single Ball Nut, Short Carriage
METRIC \square (®)

A1: depth 11
A2: socket cap screw ISO4762-M6×20 8.8
A3: ENF inductive sensor rail kit (optional - see page 172)

Stroke length (Smax) $\mathbf{[m m}]$	A $[\mathbf{m m}]$	B $[\mathbf{m m}]$	C [mm]
$0-580$	95	20	335
$581-1140$	110	60	390
$1141-1805$	130	80	430
$1806-2460$	155	105	480

Stroke length (Smax) [mm]	A $[\mathbf{m m}]$	B $[\mathbf{m m}]$	C $[\mathbf{m m}]$
$2461-3125$	175	125	520
$3126-3780$	200	150	570
$3781-4445$	220	170	610
$4446-5000$	240	190	650

Double Short Carriages

Parameter		WM60S
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	255
Dynamic load (Fy), maximum	$[\mathrm{N}]$	2800
Dynamic load (Fz), maximum	$[\mathrm{N}]$	2800
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 1,4$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 1,4$
Force required to move second carriage	$[\mathrm{N}]$	18
Total length (L tot)	$[\mathrm{mm}]$	Smax $+\mathrm{C}+\mathrm{La}$

[^1]A4: tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature $A 5$: can be changed over to one of the three alternative lubricating points by the customer

ELECTROMATE

WM60X

Ball Screw Drive, Ball Guide, Left/Right Moving Carriages

» Ordering key - see page 191
" Accessories - see page 135
" Additional data - see page 182

General Specifications

Parameter	WM60X
Profile size $(w \times h)[\mathrm{mm}]$	60×60
Type of screw	ball screw with double nut
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WM60X
Stroke length (Smax), maximum	$[\mathrm{mm}]$	10340
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	0,25
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	20
Repeatability	$[\mathrm{mm}]$	0,01
Input speed, maximum	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Operation temperature limits	$[\mathrm{N}]$	4000
Dynamic load (Fx), maximum	$[\mathrm{N}]$	2000
Dynamic load (Fy), maximum	$[\mathrm{N}]$	2000
Dynamic load (Fz), maximum	$[\mathrm{Nm}]$	100
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	200
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	200
Dynamic load torque (Mz), maximum	$[\mathrm{N}]$	500
Drive shaft force (Frd), maximum	$[\mathrm{Nm}]$	35
Drive shaft torque (Mta), maximum	$[\mathrm{mm}]$	20
Ball screw diameter (do)	$[\mathrm{mm}]$	5
Ball screw lead (p)	$[\mathrm{kg}]$	
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	10,33	1,65

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]
	$\mathbf{p = 5}$
1500	1,6
3000	2,8

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information. Units with a profile length over 5400 mm consist of two profiles where the joint between the two profiles must be addequately supported on both sides.

Definition of Forces

Toll Free Fax (877) SERVO99
Linear Motion Systems
sales@electromate.com

WM60X

Ball Screw Drive, Ball Guide, Left/Right Moving Carriages

○ $A 4$
〕 $A 5$

A1: depth 11
A2: socket cap screw ISO4762-M6×20 8.8
A3: ENF inductive sensor rail kit (optional - see page 172)

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]	X [mm]	Y [mm]	Z [mm]
0-1390 (0-1200)	115	65	60	80	620	800
1391-2670 (1201-2480)	165	115	210	230	770	1050
2671-4150 (2481-3960)	185	135	250	270	810	1130
4151-5560 (3961-5370)	210	160	300	320	860	1230
5561-10340 (5371-10150)	contact customer sevice					

Values between brackets = for units with long carriage

Long Carriage

Parameter		WM60X
Carriage length	$[\mathrm{mm}]$	450
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	500
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	500
Weight	$[\mathrm{kg}]$	3,1

ELECTROMATE

WM80D

Ball Screw Drive, Ball Guide, Double Ball Nuts

» Ordering key - see page 191
" Accessories - see page 135
" Additional data - see page 182

General Specifications

Parameter	WM80D
Profile size $(w \times h)[\mathrm{mm}]$	80×80
Type of screw	ball screw with double nuts
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WM80D
Stroke length (Smax), maximum screw lead 5, 10, 20 mm screw lead 50 mm	$[\mathrm{mm}]$	
Linear speed, maximum		11000
Acceleration, maximum	$[\mathrm{m} / \mathrm{s}]$	5000
Repeatability	$[\pm \mathrm{mm}]$	0,5
Input speed, maximum	$[\mathrm{rpm}]$	3000
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	5000
Dynamic load (Fy), maximum	$[\mathrm{N}]$	3000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	3000
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	350
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	300
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	300
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	700
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	55
Ball screw diameter (do)	$[\mathrm{mm}]$	25
Ball screw lead (p)	$[\mathrm{mm}]$	$5,10,20,50$
Weight		
of unit with zero stroke		
of every 100 mm of stroke		
of each carriage	$[\mathrm{kg}]$	

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]			
	$p=5$	$p=10$	$p=20$	$p=50$
150	1,1	1,5	1,8	2,3
1500	1,7	2.1	2,3	3,0
3000	2,1	2,5	2,6	3,6

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information. Units with a profile length over 6300 mm consist of two profiles where the joint between the two profiles must be addequately supported on both sides.

Definition of Forces

Toll Free Fax (877) SERV099

Linear Motion Systems
sales@electromate.com

WM80D

Ball Screw Drive, Ball Guide, Double Ball Nuts

A1: depth 12 mm
A2: socket cap screw ISO4762-M6×20 8.8
A3: ENF inductive sensor rail kit (optional - see page 172)

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]			
$0-780(0-610)$	120	80	$500(670)$			
$781-1535(611-1365)$	170	125	$595(765)$			
$1536-2375(1366-2205)$	190	145	$635(805)$			
$2376-3205(2206-3035)$	215	170	$685(855)$			
Values between brackets $=$ for units with long carriage						

Long Carriage

Parameter		WM80D
Carriage length	$[\mathrm{mm}]$	450
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	750
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	750
Weight	$[\mathrm{kg}]$	6,4

Values between brackets = for units with long carriage

A4: tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature A5: can be changed over to one of three alternative lubrication points by customer

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$3206-4045(3036-3875)$	235	190	$725(895)$
$4046-4885(3876-4715)$	255	210	$765(935)$
$4886-5000(4716-4830)$	280	235	$815(985)$
$5001-11000(4717-10830)$	contact customer service		

Double Carriages

Parameter		WM80D
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	360
Dynamic load (Fy), maximum	$[\mathrm{N}]$	6000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	6000
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 3$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 3$
Force required to move second carriage	$[\mathrm{N}]$	25
Total length (L tot)	$[\mathrm{mm}]$	Smax $+\mathrm{C}+\mathrm{La}$

${ }^{1}$ Value in mm

ELECTROMATE

WM80S

Ball Screw Drive, Ball Guide, Singel Ball Nut, Short Carriage

» Ordering key - see page 191
" Accessories - see page 135
" Additional data - see page 182

General Specifications

Parameter	WM80S
Profile size $(w \times h)[\mathrm{mm}]$	80×80
Type of screw	ball screw with single nut
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WM80S
Stroke length (Smax), maximum	$[\mathrm{mm}]$	5000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	2,5
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	20
Repeatability	$[\mathrm{mm}]$	0,02
Input speed, maximum	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Operation temperature limits	$[\mathrm{N}]$	3500
Dynamic load (Fx), maximum	$[\mathrm{N}]$	2100
Dynamic load (Fy), maximum	$[\mathrm{N}]$	2100
Dynamic load (Fz), maximum	$[\mathrm{Nm}]$	150
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	180
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	180
Dynamic load torque (Mz), maximum	$[\mathrm{N}]$	700
Drive shaft force (Frd), maximum	$[\mathrm{Nm}]$	55
Drive shaft torque (Mta), maximum	$[\mathrm{mm}]$	25
Ball screw diameter (do)	$[\mathrm{mm}]$	$5,10,20,50$
Ball screw lead (p)	$[\mathrm{kg}]$	
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	7,0	1,1

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]			
	$p=5$	$p=10$	$p=20$	$p=50$
150	0,9	1,1	1,3	2,0
1500	1,3	1,5	1,8	2,4
3000	1,7	1,8	2,0	2,9

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

Linear Motion Systems
sales@electromate.com

WM80S

Ball Screw Drive, Ball Guide, Singel Ball Nut, Short Carriage

A1: depth 12 mm
A2: socket cap screw IS04762-M6×20 8.8
A3: ENF inductive sensor rail kit (optional - see page 172)

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$0-680$	95	35	350
$681-1310$	125	80	425
$1311-2065$	150	105	475
$2066-2830$	170	125	515

Double Carriages

Parameter		WM80S
Minimum distance between carriages (L_{A})	[mm]	280
Dynamic load (Fy), maximum	[N]	4200
Dynamic load (Fz), maximum	[N]	4200
Dynamic load torque (My), maximum	[Nm]	L $\mathrm{A}^{\prime} \times 2,1$
Dynamic load torque (Mz), maximum	[Nm]	L A ${ }^{\prime} \times 2,1$
Force required to move second carriage	[N]	22,5
Total length (L tot)	[mm]	Smax + C + L A

A4: tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature A : can be changed over to one of three alternative lubrication points by customer

Stroke length (Smax) $[\mathbf{m m}]$	A [mm]	B [mm]	C [mm]
2831-3590	195	150	565
$3591-4355$	215	170	605
$4356-5000$	235	190	645

ELECTROMATE

WM120D

Ball Screw Drive, Ball Guide, Double Ball Nuts

» Ordering key - see page 191
» Accessories - see page 135
" Additional data - see page 182

General Specifications

Parameter	WM120D
Profile size $(w \times h)[\mathrm{mm}]$	120×120
Type of screw	ball screw with double nuts
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication $4 \times$ mounting clamps
Included accessories	

Performance Specifications		
Parameter		WM120D
Stroke length (Smax), maximum screw lead 5, 10, 20 mm screw lead 40 mm	[mm]	$\begin{array}{r} 11000 \\ 5000 \end{array}$
Linear speed, maximum	[m/s]	2,0
Acceleration, maximum	[m/s ${ }^{2}$]	20
Repeatability	[$\pm \mathrm{mm}$]	0,01
Input speed, maximum	[rpm]	3000
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load (Fx), maximum screw lead 5, 10, 20 mm screw lead 40 mm	[N]	$\begin{array}{r} 12000 \\ 8000 \end{array}$
Dynamic load (Fy), maximum	[N]	6000
Dynamic load (Fz), maximum	[N]	6000
Dynamic load torque (Mx), maximum	[Nm]	500
Dynamic load torque (My), maximum	[Nm]	600
Dynamic load torque (Mz), maximum	[Nm]	600
Drive shaft force (Frd), maximum	[N]	1000
Drive shaft torque (Mta), maximum	[Nm]	80
Ball screw diameter (do)	[mm]	32
Ball screw lead (p)	[mm]	5,10, 20, 40
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{array}{r} 25,91 \\ 1,93 \\ 9,25 \end{array}$

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]			
	$p=5$	$p=10$	$p=20$	$p=40$
1500	1,4	2,0	2,3	2,4
3000	3,5	3,0	3,3	3,8
年	3,7	4,0	4,3	

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information. Units with a profile length over 5400 mm consist of two profiles where the joint between the two profiles must be addequately supported on both sides.

Definition of Forces

Toll Free Fax (877) SERV099

Linear Motion Systems

sales@electromate.com

WM120D

Ball Screw Drive, Ball Guide, Double Ball Nuts

Z

A1: depth 22
A2: socket cap screw IS04762-M8×20 8.8

Stroke length (Smax) $[\mathbf{m m}]$	A $[\mathbf{m m}]$	$\mathbf{B}[\mathbf{m m}]$	$\mathbf{C}[\mathbf{m m}]$
$0-890(0-710)$	155	100	$595(775)$
$891-1695(711-1515)$	225	170	$735(915)$
$1696-2625(1516-2445)$	260	205	$805(985)$
$2626-3555(2446-3375)$	295	240	$875(1055)$
Values between brackets $=$ for units with long carriage			

Long Carriage

Parameter		WM120D
Carriage length	$[\mathrm{mm}]$	500
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	1500
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	1500
Weight	$[\mathrm{kg}]$	14,2

Double Carriages

Parameter		WM120D
Minimum distance between carriages (La)	$[\mathrm{mm}]$	450
Dynamic load (Fy), maximum	$[\mathrm{N}]$	12000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	12000
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{1} \times 6$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{1} \times 6$
Force required to move second carriage	$[\mathrm{N}]$	30
Total length (L tot)	$[\mathrm{mm}]$	Smax $+\mathrm{C}+\mathrm{La}$

A3: tapered lubricating nipple to DIN71412 M8×1 on fixed-bearing side as standard feature A4: can be changed over to one of the three alternative lubricating points by the customer

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$3556-4485(3376-4305)$	330	275	$945(1125)$
$4486-5000(4306-4820)$	365	310	$1015(1195)$
$5001-11000(4307-10820)$	contact customer service		

[^2]
ELECTROMATE

WV60

Ball Screw Drive, No Guides

General Specifications

Parameter	WV60
Profile size $(w \times h)[\mathrm{mm}]$	60×60
Type of screw	ball screw with double nut
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WV60
Stroke length (Smax), maximum screw lead 5, 20 mm screw lead 50 mm	[mm]	$\begin{array}{r} 11000 \\ 5000 \end{array}$
Linear speed, maximum	[m/s]	2,5
Acceleration, maximum	[m/s ${ }^{2}$]	20
Repeatability	[$\pm \mathrm{mm}$]	0,01
Input speed, maximum	[rpm]	3000
Operation temperature limits	[${ }^{\text {C }}$]	0-80
Dynamic load (Fx), maximum	[N]	4000
Dynamic load (Fy), maximum	[N]	0
Dynamic load (Fz), maximum	[N]	0
Dynamic load torque (Mx), maximum	[Nm]	0
Dynamic load torque (My), maximum	[Nm]	0
Dynamic load torque (Mz), maximum	[Nm]	0
Drive shaft force (Frd), maximum	[N]	500
Drive shaft torque (Mta), maximum	[Nm]	35
Ball screw diameter (do)	[mm]	20
Ball screw lead (p)	[mm]	5, 20, 50
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{aligned} & 4,72 \\ & 0,55 \\ & 1,42 \end{aligned}$

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]		
	$p=5$	$p=20$	$p=50$
1500	0,7	0,9	1,1
3000	1,3	1,5	1,5

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information. Units with a profile length over 6300 mm consist of two profiles where the joint between the two profiles must be addequately supported on both sides.

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

WV60

Dimensions	Projection
METRIC	

Ball Screw Drive, No Guides

A1: depth 11
A2: socket cap screw ISO4762-M6×20 8.8
A3: ENF inductive sensor rail kit (optional - see page 172)

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$0-690$	130	80	430
$691-1415$	155	105	480
$1416-2155$	175	125	520
$2156-2885$	200	150	570

A4: tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature $A 5$: can be changed over to one of the three alternative lubricating points by the customer

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$2886-3625$	220	170	610
$3626-4355$	245	195	660
$4256-5095$	265	215	700
$5096-11000$	contact customer service		

ELECTROMATE

WV80

Ball Screw Drive, No Guides

General Specifications

Parameter	WV80
Profile size $(w \times h)[\mathrm{mm}]$	80×80
Type of screw	ball screw with double nuts
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WV80
Stroke length (Smax), maximum screw lead 5, 10, 20 mm screw lead 50 mm	[mm]	$\begin{array}{r} 11000 \\ 5000 \end{array}$
Linear speed, maximum	[m/s]	2,5
Acceleration, maximum	[m/s ${ }^{2}$]	20
Repeatability	[$\pm \mathrm{mm}$]	0,01
Input speed, maximum	[rpm]	3000
Operation temperature limits	[${ }^{\text {C }}$]	0-80
Dynamic load (Fx), maximum	[N]	5000
Dynamic load (Fy), maximum	[N]	0
Dynamic load (Fz), maximum	[N]	0
Dynamic load torque (Mx), maximum	[Nm]	0
Dynamic load torque (My), maximum	[Nm]	0
Dynamic load torque (Mz), maximum	[Nm]	0
Drive shaft force (Frd), maximum	[N]	700
Drive shaft torque (Mta), maximum	[Nm]	55
Ball screw diameter (do)	[mm]	25
Ball screw lead (p)	[mm]	5, 10, 20, 50
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{aligned} & 7,95 \\ & 0,99 \\ & 2,25 \end{aligned}$

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]					
	0,9	1,1	1,3	1,4		
1500	1,6	1,9	2,1	2,3		
3000	2,0	2,4	2,6	3,0		M idle $=$ the input torque needed to move the carriage with no load on it.
:---						

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information. Units with a profile length over 6300 mm consist of two profiles where the joint between the two profiles must be addequately supported on both sides.

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

WV80

Ball Screw Drive, No Guides

A1: depth 12 mm
A2: socket cap screw ISO4762-M6×20 8.8
A3: ENF inductive sensor rail kit (optional - see page 172)

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$0-775$	125	50	395
$776-1670$	145	95	460
$1671-2505$	170	115	505
$2506-3340$	190	140	550

A4: tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature A5: can be changed over to one of three alternative lubrication points by customer

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
3341-4175	210	160	590
$4176-5015$	235	180	635
$5016-11000$	contact customer service		

ELECTROMATE

WV120

Ball Screw Drive, No Guides

General Specifications

Parameter	WV120
Profile size $(w \times h)[\mathrm{mm}]$	120×120
Type of screw	ball screw with double nuts
Carriage sealing system	self-adjusting plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WV120
Stroke length (Smax), maximum screw lead 5, 10, 20 mm screw lead 40 mm	[mm]	$\begin{array}{r} 11000 \\ 5000 \end{array}$
Linear speed, maximum	[m/s]	2,0
Acceleration, maximum	[m/s ${ }^{2}$]	20
Repeatability	[$\pm \mathrm{mm}$]	0,01
Input speed, maximum	[rpm]	3000
Operation temperature limits	[${ }^{\circ} \mathrm{C}$]	0-80
Dynamic load (Fx), maximum screw lead 5, 10, 20 mm screw lead 40 mm	[N]	$\begin{array}{r} 12000 \\ 8000 \end{array}$
Dynamic load (Fy), maximum	[N]	0
Dynamic load (Fz), maximum	[N]	0
Dynamic load torque (Mx), maximum	[Nm]	0
Dynamic load torque (My), maximum	[Nm]	0
Dynamic load torque (Mz), maximum	[Nm]	0
Drive shaft force (Frd), maximum	[N]	1000
Drive shaft torque (Mta), maximum	[Nm]	80
Ball screw diameter (do)	[mm]	32
Ball screw lead (p)	[mm]	5,10,20,40
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{array}{r} 18,10 \\ 1,94 \\ 4,75 \end{array}$

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]			
	$p=5$	$\mathrm{p}=10$	$\mathrm{p}=20$	$p=40$
150	1,0	1,1	1,4	1,5
1500	2,1	2,2	2,5	2,8
3000	2,4	2,6	3,0	3,5

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information. Units with a profile length over 5400 mm consist of two profiles where the joint between the two profiles must be addequately supported on both sides.

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

Ball Screw Drive, No Guides

A1: depth 22
A2: socket cap screw ISO4762-M8×20 8.8

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$0-940$	145	50	465
$941-1860$	180	120	570
$1861-2790$	215	155	640
$2791-3720$	250	190	710

A3: tapered lubricating nipple to DIN71412 M8×1 on fixed-bearing side as standard feature A4: can be changed over to one of the three alternative lubricating points by the customer

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$3721-4650$	285	225	780
$4651-5000$	320	255	845
$5001-11000$	contact customer service		

ELECTROMATE

MLSM60D

Ball Screw Drive, Ball Guide

» Ordering key - see page 193
" Accessories - see page 135
" Additional data - see page 182

General Specifications

Parameter	MLSM60D
Profile size $(w \times h)[\mathrm{mm}]$	160×65
Type of screw	ball screw with double nuts
Carriage sealing system	plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		MLSM60D
Stroke length (Smax), maximum	$[\mathrm{mm}]$	5500
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	2,5
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	20
Repeatability	$[\mathrm{mm}]$	0,01
Input speed, maximum	3000	
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	5000
Dynamic load (Fy), maximum	$[\mathrm{N}]$	6000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	6000
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	400
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	460
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	460
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	350
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	60
Ball screw diameter (do)	$[\mathrm{mm}]$	25
Ball screw lead (p)	$[\mathrm{mm}]$	$5,10,20,50$
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	$[\mathrm{kg}]$	

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]			
	1,0	1,6	1,9	2,7
1500	1,6	2,2	2,3	3,4
3000	2,0	2,6	2,6	4,0
M idle $=$ the input torque needed to move the carriage with no load on it.				

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Definition of Forces

Dimensions	Projection
METRIC	$\square \Theta$

Ball Screw Drive, Ball Guide

A1: depth 10
A2: socket cap screw ISO4762-M6×20 8.8
A3: ENF inductive sensor rail kit (optional - see page 172)

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$0-750(0-580)$	90	45	$435(605)$
$751-1220(581-1050)$	105	90	$495(665)$
$1221-1980(1051-1810)$	125	110	$535(705)$
$1981-2730(1811-2560)$	150	135	$585(765)$

Values between brackets = for units with long carriage

Long Carriage

Parameter		MLSM60D
Carriage length	$[\mathrm{mm}]$	450
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	940
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	940
Weight	$[\mathrm{kg}]$	6,5

Double Carriages

Parameter		MLSM60D
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	320
Dynamic load (Fy), maximum	$[\mathrm{N}]$	12000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	12000
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{1} \times 6$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{1} \times 6$
Force required to move second carriage	$[\mathrm{N}]$	27
Total length (L tot)	$[\mathrm{mm}]$	Smax $+\mathrm{C}+\mathrm{L}$ A

A4: tapered lubric ating nipple to DIN71412 AM6 on fixed-bearing side as standard feature A5: can be changed over to one of the three alternative lubricating points by the customer

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
$2731-3490(2561-3320)$	170	155	$625(795)$
$3491-4240(3321-4070)$	195	180	$675(845)$
$4241-5000(4071-4830)$	215	200	$715(885)$
$5001-5500(4831-5330)$	235	220	$755(925)$

A1: depth 10

ELECTROMATE

MLSM80D

Ball Screw Drive, Ball Guide

General Specifications

Parameter	MLSM80D
Profile size $(w \times h)[\mathrm{mm}]$	240×85
Type of screw	ball screw with double nuts
Carriage sealing system	plastic cover band
Screw supports	included in all units that require screw supports
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		MLSM80D
Stroke length (Smax), maximum	$[\mathrm{mm}]$	5200
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	2,0
Acceleration, maximum	$\left[\mathrm{m} \mathrm{s}^{2}\right]$	20
Repeatability	$[\mathrm{mm}]$	0,01
Input speed, maximum	3000	
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	
screw lead 5, 10, 20 mm screw lead 40 mm		12000
Dynamic load (Fy), maximum	$[\mathrm{N}]$	8000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	8000
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	7800
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	900
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	900
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	700
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	85
Ball screw diameter (do)	$[\mathrm{mm}]$	32
Ball screw lead (p)	$[\mathrm{mm}]$	$5,10,20,40$
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	$[\mathrm{kg}]$	29,5

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]			
	$p=5$	$p=10$	$p=20$	$p=40$
1500	1,6	2,2	2,5	2,8
3000	3,2	3,2	3,4	4,0
M 2,0	4,2	4,5		

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Definition of Forces

MLSM80D

Ball Screw Drive, Ball Guide

A1: depth 15
A2: socket cap screw IS04762-M8×20 8.8
A3: ENF inductive sensor rail kit (optional - see page 172)

Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]	Stroke length (Smax) [mm]	A [mm]	B [mm]	C [mm]
0-750 (0-570)	100	90	530 (710)	2621-3360 (2441-3180)	220	210	770 (950)
751-1140 (571-960)	130	120	590 (770)	3361-4100 (3181-3920)	250	240	830 (1010)
1141-1880 (961-1700)	160	150	650 (830)	4101-4840 (3921-4660)	280	270	890 (1070)
1881-2620 (1701-2440)	190	180	710 (890)	4841-5000 (4661-4820)	310	300	950 (1130)
Values between brackets = for units with long carriage							

Values between brackets = for units with long carriage

Long Carriage

Parameter		MLSM80D
Carriage length	$[\mathrm{mm}]$	500
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	1750
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	1750
Weight	$[\mathrm{kg}]$	16

A4: tapered lubricating nipple to DIN71412 M8×1 on fixed-bearing side as standard feature A5: can be changed over to one of the three alternative lubricating points by the customer

Double Carriages

Parameter		MLSM80D
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	400
Dynamic load (Fy), maximum	$[\mathrm{N}]$	16000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	16000
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 8$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 8$
Force required to move second carriage	$[\mathrm{N}]$	35
Total length (L tot)	$[\mathrm{mm}]$	Smax $+\mathrm{C}+\mathrm{L} \mathrm{A}$
'Value in mm		

M55

Ball Screw Drive, Ball Guide

General Specifications

Parameter	M55
Profile size $(w \times h)[\mathrm{mm}]$	58×55
Type of screw	ball screw with single nut
Carriage sealing system	self-adjusting steel cover band
Screw supports	number of screw supports to be specified by customer at order
Lubrication	lubrication of ball screw
Included accessories	none

Performance Specifications		
Parameter		M55
Stroke length (Smax), maximum	[mm]	3000
Linear speed, maximum	[m/s]	1,6
Acceleration, maximum	[m/s ${ }^{2}$]	8
Repeatability	[$\pm \mathrm{mm}$]	0,05
Input speed, maximum	[rpm]	3000
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	-20-70
Dynamic load (Fx), maximum	[N]	1000
Dynamic load (Fy), maximum	[N]	900
Dynamic load (Fz), maximum	[N]	900
Dynamic load torque (Mx), maximum	[Nm]	9
Dynamic load torque (My), maximum	[Nm]	48
Dynamic load torque (Mz), maximum	[Nm]	48
Drive shaft force (Frd), maximum	[N]	200
Drive shaft torque (Mta), maximum	[Nm]	12
Screw diameter (do)	[mm]	16
Screw lead (p)	[mm]	5,10,20
Weight of unit with zero stroke of every 100 mm of stroke of carriage of option single screw support of option double screw supports	[kg]	$\begin{aligned} & 3,90 \\ & 0,56 \\ & 1,20 \\ & 0,83 \\ & 1,88 \end{aligned}$

Performance Specifications

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]		
	0,02	0,03	0,04
500 - with screw supports	0,03	0,05	0,07
205			

M idle $=$ the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Critical Speed

1: No screw support required
L order [mm]
2: Single screw support required
3: Double screw supports required

Definition of Forces

ELECTROMATE

M55

Dimensions	Projection
METRIC	$\square \Theta$

Ball Screw Drive, Ball Guide

A1: lubrication holes
A2: $\varnothing 9,5 / \varnothing 5,5$ for socket head cap screw M5

Screw support configuration	$\mathbf{A}[\mathbf{m m}]$	$\mathbf{B}[\mathbf{m m}]$	Ordering length (L order) $[\mathbf{m m}]$	Total length (L tot) $[\mathbf{m m}]$
No screw support	6	6	L order $=S m a x+A+B+184$	L tot $=L$ order +70
Single screw support	40	40	L order $=S m a x+A+B+184$	L tot $=L$ order +70
Double screw supports	92	92	L order $=S m a x+A+B+184$	L tot $=L$ order +70

Double Carriages

Parameter		M55
Minimum distance between carriages (Lc)	$[\mathrm{mm}]$	200
Dynamic load (Fy), maximum	$[\mathrm{N}]$	1350
Dynamic load (Fz), maximum	$[\mathrm{N}]$	1350
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 0,675$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 0,675$
Force required to move second carriage	$[\mathrm{N}]$	2
Weight of unit with zero stroke of carriages	$[\mathrm{kg}]$	

Screw support configuration	A [mm]	B [mm]
No screw support	6	6
Single screw support	40	40
Double screw supports	92	92

Ordering length (L order) $[\mathbf{m m}]$	Total length $(L$ tot $)[$ mm]
L order $=S m a x+A+B+L c+184$	L tot $=L$ order +70
L order $=S m a x+A+B+L c+184$	L tot $=L$ order +70
L order $=S m a x+A+B+L c+184$	L tot $=L$ order +70

M75

Ball Screw Drive, Ball Guide

General Specifications

Parameter	M75
Profile size $(w \times h)[\mathrm{mm}]$	86×75
Type of screw	ball screw with single nut
Carriage sealing system	self-adjusting steel cover band
Screw supports	number of screw supports to be specified by customer at order
Lubrication	lubrication of ball screw
Included accessories	

Performance Specifications

Parameter		M75
Stroke length (Smax), maximum	$[\mathrm{mm}]$	4000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	1,0
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	8
Repeatability	$[\mathrm{mm}]$	0,05
Input speed, maximum	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-70$
Operation temperature limits	$[\mathrm{N}]$	2500
Dynamic load (Fx), maximum	$[\mathrm{N}]$	2000
Dynamic load (Fy), maximum	$[\mathrm{N}]$	2000
Dynamic load (Fz), maximum	$[\mathrm{Nm}]$	18
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	130
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	130
Dynamic load torque (Mz), maximum	$[\mathrm{N}]$	600
Drive shaft force (Frd), maximum	$[\mathrm{Nm}]$	30
Drive shaft torque (Mta), maximum	$[\mathrm{mm}]$	20
Screw diameter (do)	$[\mathrm{mm}]$	$5,12,7,20$
Screw lead (p)	$[\mathrm{kg}]$	6,90
Weight of unit with zero stroke of every 100 mm of stroke of carriage of option single screw support of option double screw supports		

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]		
	0,04	0,1	0,16
500 - with screw supports	0,06	0,12	0,2

$\mathrm{Midle}=$ the input torque needed to move the carriage with no load on it.
» Ordering key - see page 194
" Accessories - see page 135
" Additional data - see page 182

Deflection of the Profile

Critical Speed

1: No screw support required
2: Single screw support required
3: Double screw supports required

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

Linear Motion Systems

M75

Dimensions	Projection
METRIC	$\square \odot$

Ball Screw Drive, Ball Guide

A1: lubrication holes
A2: ø13,5/ø8,5 for socket head cap screw M8

| Screw support configuration | A $\mathbf{m m}]$ | B $[\mathbf{m m}]$ | Ordering length (L order) $[\mathbf{m m}]$ | Total length (L tot) $[\mathbf{m m}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No screw support | 5 | 5 | L order $=S m a x+A+B+218$ | L tot $=L$ order +78 |
| Single screw support | 60 | 60 | L order $=S m a x+A+B+218$ | L tot $=L$ order +78 |
| Double screw supports | 126 | 126 | L order $=S m a x+A+B+218$ | L tot $=L$ order +78 |

Double Carriages

Parameter		M75
Minimum distance between carriages (Lc)	$[\mathrm{mm}]$	250
Dynamic load (Fy), maximum	$[\mathrm{N}]$	3000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	3000
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 1,5$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 1,5$
Force required to move second carriage	$[\mathrm{N}]$	2
Weight of unit with zero stroke of carriages	$[\mathrm{kg}]$	

Screw support configuration	A $[\mathbf{m m}]$	$\mathbf{B}[\mathbf{m m}]$	Ordering length $(\mathbf{L}$ order) $[\mathbf{m m}]$	Total length (L tot) $[\mathbf{m m}]$
No screw support	5	5	L order $=S m a x+A+B+L c+218$	L tot $=L$ order +78
Single screw support	60	60	L order $=S m a x+A+B+L c+218$	L tot $=L$ order +78
Double screw supports	126	126	L order $=S m a x+A+B+L c+218$	L tot $=L$ order +78

M100

Ball Screw Drive, Ball Guide

General Specifications

General Specifications	
Parameter	M100
Profile size $(w \times h)[\mathrm{mm}]$	108×100
Type of screw	ball screw with single nut
Carriage sealing system	self-adjusting steel cover band
Screw supports	number of screw supports to be specified by customer at order
Lubrication	lubrication of ball screw
Included accessories	

Performance Specifications

Parameter		M100
Stroke length (Smax), maximum	$[\mathrm{mm}]$	6000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	1,25
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	8
Repeatability	$[\mathrm{mm}]$	0,05
Input speed, maximum	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-70$
Operation temperature limits	$[\mathrm{N}]$	5000
Dynamic load (Fx), maximum	$[\mathrm{N}]$	5000
Dynamic load (Fy), maximum	$[\mathrm{N}]$	5000
Dynamic load (Fz), maximum	$[\mathrm{Nm}]$	6000
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	400
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	400
Dynamic load torque (Mz), maximum	$[\mathrm{N}]$	1000
Drive shaft force (Frd), maximum	$[\mathrm{Nm}]$	45
Drive shaft torque (Mta), maximum	$[\mathrm{mm}]$	25
Screw diameter (do)	$[\mathrm{mm}]$	$5,10,25$
Screw lead (p)	$[\mathrm{kg}]$	
Weight of unit with zero stroke of every 100 mm of stroke of carriage of option single screw support of option double screw supports		14,3

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]		
	0,08	0,14	0,32
500 - with screw supports	0,1	0,16	0,37

$\mathrm{Midle}=$ the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Critical Speed

1: No screw support required
» Ordering key - see page 194
» Accessories - see page 135
" Additional data - see page 182

2: Single screw support required
3: Double screw supports required

Definition of Forces

ELECTROMATE

Ball Screw Drive, Ball Guide

A1: lubrication holes
A2: ø17/ø10,5 for socket head cap screw M10

Screw support configuration	A [mm]	B [mm]
No screw support	1	1
Single screw support	31	31
Double screw supports	86	86

A3: 100 (L order <= 1 m), 320 (L order > 1 m)
A4: 100 (L order <= 1 m), 430 (L order > 1 m)

Ordering length (L order) [mm]	Total length (L tot) [mm]
L order $=$ Smax + A + +306	L tot $=$ L order +88
L order $=$ Smax + A + + 306	L tot $=$ L order +88
L order $=$ Smax + A + +306	L tot = L order +88

Double Carriages

Parameter		M100
Minimum distance between carriages (Lc)	$[\mathrm{mm}]$	350
Dynamic load (Fy), maximum	$[\mathrm{N}]$	7500
Dynamic load (Fz), maximum	$[\mathrm{N}]$	7500
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{\mathbf{1}} \times 3,75$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 3,75$
Force required to move second carriage	$[\mathrm{N}]$	2
Weight of unit with zero stroke of carriages	$[\mathrm{kg}]$	

Screw support configuration	A [mm]	B [mm]	Ordering length (L order) [mm]	Total length (L tot) [mm]
No screw support	1	1	L order $=$ Smax + A $+B+L C+306$	L tot $=$ L order +88
Single screw support	31	31	L order $=$ Smax + A $+B+L C+306$	L tot $=$ L order +88
Double screw supports	86	86	L order $=$ Smax + A + B + Lc + 306	L tot = L order +88

${ }^{1}$ Value in mm

2HB10

Ball Screw Drive, Ball Guide

» Ordering key - see page 195
" Accessories - see page 135

General Specifications	
Parameter	2HB10
Profile size $(w \times h)[\mathrm{mm}]$	100×60
Type of screw	ball screw
Carriage sealing system	none (optional shroud or bellows)
Screw supports	none
Lubrication	lubrication of screw and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.

Definition of Forces

2HB10

Ball Screw Drive, Ball Guide

A1: lubrication nipple (using the unit with the nipple mounted makes the stroke 10 mm shorter).
Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)
$L=S m a x+125$

2HB20

"Ordering key - see page 195
" Accessories - see page 135

Ball Screw Drive, Ball Guide

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.

Definition of Forces

Performance Specifications

Parameter		2HB20
Stroke length (Smax), maximum	[mm]	2760
Linear speed, maximum	[m/s]	0,75
Acceleration, maximum	[m/s ${ }^{2}$]	9,8
Repeatability	[$\pm \mathrm{mm}$]	0,005
Input speed, maximum	[rpm]	1800
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	-20-80
Dynamic load (Fx), maximum	[N]	4697
Dynamic load (Fy), maximum	[N]	34000
Dynamic load (Fz), maximum	[N]	34000
Dynamic load torque (Mx), maximum	[Nm]	2463
Dynamic load torque (My), maximum	[Nm]	1903
Dynamic load torque (Mz), maximum	[Nm]	1903
Drive shaft force (Frd), maximum	[N]	533
Drive shaft torque (Mta), maximum	[Nm]	15,5
Ball screw diameter (do)	[mm]	25
Ball screw lead (p)	[mm]	5, 10, 25
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{gathered} 13,32 \\ 1,70 \\ 4,47 \end{gathered}$

[^3]
2HB20

Ball Screw Drive, Ball Guide

A1: lubrication nipple (using the unit with the nipple mounted makes the stroke 10 mm shorter).
Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)

$L=S m a x+240$

2RB12

Ball Screw Drive, Ball Guide

» Ordering key - see page 196
" Accessories - see page 135

General Specifications	
Parameter	2RB12
Profile size $(w \times h)[\mathrm{mm}]^{1}$	130×40
Type of screw	ball screw
Carriage sealing system	none (optional bellows)
Screw supports	none
Lubrication	lubrication of screws and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

${ }^{1}$ Base width \times carriage height.

Performance Specifications		
Parameter		
Stroke length (Smax), maximum	$[\mathrm{mm}]$	1951
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	0,47
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	9,8
Repeatability	$[\pm \mathrm{mm}]$	0,005
Accuracy	$[\pm \mathrm{mm}]$	$0,025 / 300 \mathrm{~mm}$
Input speed, maximum	$[\mathrm{rpm}]$	2800
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-80$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	2100
Dynamic load (Fy), maximum	$[\mathrm{N}]$	880
Dynamic load (Fz), maximum	$[\mathrm{N}]$	1760
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	65,5
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	76,8
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	38,4
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	533
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	1,86
Ball screw diameter (do)	$[\mathrm{mm}]$	16
Ball screw lead (p)	$[\mathrm{mm}]$	5,10
Weight of unit with zero stroke of every 100 mm of stroke of each carriage $[\mathrm{kg}]$		

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

2RB12

Dimensions	Projection
METRIC	
M	

Ball Screw Drive, Ball Guide

SECTION A - A
A1: lubrication nipples (using the unit with the nipples mounted makes the stroke 10 mm shorter).
Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)

L = Smax + 149

2RB16

Ball Screw Drive, Ball Guide

» Ordering key - see page 196
" Accessories - see page 135

General Specifications	
Parameter	2RB16
Profile size $(w \times h)[\mathrm{mm}]^{1}$	160×48
Type of screw	ball screw
Carriage sealing system	none (optional bellows)
Screw supports	none
Lubrication	lubrication of screws and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

${ }^{1}$ Base width \times carriage height.

Performance Specifications		
Parameter		
Stroke length (Smax), maximum	$[\mathrm{mm}]$	2815
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	0,73
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	9,8
Repeatability	$[\pm \mathrm{mm}]$	0,005
Accuracy	$[\pm \mathrm{mm}]$	$0,025 / 300 \mathrm{~mm}$
Input speed, maximum	$[\mathrm{rpm}]$	2200
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-80$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	2998
Dynamic load (Fy), maximum	$[\mathrm{N}]$	2588
Dynamic load (Fz), maximum	$[\mathrm{N}]$	5176
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	243
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	299
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	150
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	533
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	2,66
Ball screw diameter (do)	$[\mathrm{mm}]$	20
Ball screw lead (p)	$[\mathrm{mm}]$	$5,10,20$
Weight of unit with zero stroke of every 100 mm of stroke of each carriage $[\mathrm{kg}]$		

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

2RB16

Dimensions	Projection
METRIC	
O	

Ball Screw Drive, Ball Guide

SECTION A - A
A1: lubrication nipples (using the unit with the nipples mounted makes the stroke 10 mm shorter).
Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)

L = Smax + 185

MS25

Lead Screw Drive, Ball Guide

" Ordering key - see page 197
" Accessories - see page 135

General Specifications	
Parameter	MS25
Profile size ($w \times h$ [mm$]^{1}$	50×25
Type of screw	lead screw
Carriage sealing system	none (optional bellows)
Screw supports	none
Lubrication	lubrication of screws and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

${ }^{1}$ Base width \times carriage height.

Performance Specifications		
Parameter		MS25
Stroke length (Smax), maximum	[mm]	705,5
Linear speed, maximum	[m/s]	0,85
Acceleration, maximum	[m/s ${ }^{2}$]	9,8
Repeatability	$[\pm \mathrm{mm}$]	0,005
Accuracy	[$\pm \mathrm{mm}$]	0,18/300 mm
Input speed, maximum	[rpm]	2000
Operation temperature limits	[${ }^{\text {C }}$]	-20-80
Dynamic load (Fx), maximum	[N]	17,8
Dynamic load (Fy), maximum	[N]	100
Dynamic load (Fz), maximum	[N]	100
Dynamic load torque (Mx), maximum	[Nm]	1,4
Dynamic load torque (My), maximum	[Nm]	1,3
Dynamic load torque (Mz), maximum	[Nm]	2,7
Drive shaft force (Frd), maximum	[N]	222
Drive shaft torque (Mta), maximum	[Nm]	0,08
Lead screw diameter (do)	[mm]	6,35
Lead screw lead (p) inch leads metric leads	[inch] [mm]	$\begin{gathered} 0,025,0,05,0,062, \\ 0,2,0,25,0,5,1,0 \\ 1,5,2,3 \end{gathered}$
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{aligned} & 0,47 \\ & 0,18 \\ & 0,065 \end{aligned}$

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.

Definition of Forces

Lead Screw Drive, Ball Guide

Ordering Length (L) and Maximum Stroke (Smax)

L = Smax +95

Motor block frame size ${ }^{\mathbf{1}}$	H1	H2	SD	PD	P	E(max.)	S2	L5	C1
NEMA-17	39,9	5,7	5,0	22,0	10,4	28,0	$\varnothing 0,136$	49,5	43,8
NEMA-23	57,2	14,3	6,35	38,2	14,5	33,0	M4	55,9	66,7

${ }^{1}$ Other sizes are easily configured. See www.linearmotioneering.com for the motor mounting configurator.

MS33

Lead Screw Drive, Ball Guide

» Ordering key - see page 197
" Accessories - see page 135

General Specifications	
Parameter	MS33
Profile size ($w \times h$ [mm$]^{1}$	60×33
Type of screw	lead screw
Carriage sealing system	none (optional bellows)
Screw supports	none
Lubrication	lubrication of screws and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

${ }^{1}$ Base width \times carriage height.

Performance Specifications		
Parameter		MS33
Stroke length (Smax), maximum	[mm]	704
Linear speed, maximum	[m/s]	1,02
Acceleration, maximum	[m/s $\left.\mathrm{s}^{2}\right]$	9,8
Repeatability	$[\pm \mathrm{mm}]$	0,005
Accuracy	$[\pm \mathrm{mm}]$	0,18/300 mm
Input speed, maximum	[rpm]	2000
Operation temperature limits	[${ }^{\text {C }}$]	-20-80
Dynamic load (Fx), maximum	[N]	80,1
Dynamic load (Fy), maximum	[N]	150
Dynamic load (Fz), maximum	[N]	150
Dynamic load torque (Mx), maximum	[Nm]	2,8
Dynamic load torque (My), maximum	[Nm]	2,5
Dynamic load torque (Mz), maximum	[Nm]	5,1
Drive shaft force (Frd), maximum	[N]	222
Drive shaft torque (Mta), maximum	[Nm]	0,43
Lead screw diameter (do)	[mm]	9,525
Lead screw lead (p) inch leads metric leads	[inch] [mm]	$\begin{gathered} 0,0625,0,1,0,125,0,2, \\ 0,375,0,5,1,0,1,2 \\ 2 \end{gathered}$
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{aligned} & 0,69 \\ & 0,31 \\ & 0,12 \end{aligned}$

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.

Definition of Forces

MS33

Lead Screw Drive, Ball Guide

Ordering Length (L) and Maximum Stroke (Smax)
L = Smax +96

Motor block frame size ${ }^{\mathbf{1}}$	H1	H2	SD	PD	P	E (max.)	S2	L5	C1
NEMA-17	39,9	$1,2^{2}$	5,0	22,0	7,8	28,0	00,136	49,5	43,8
NEMA-23	57,2	7,5	6,35	38,2	14,0	33,0	M4	55,9	66,7

${ }^{1}$ Other sizes are easily configured. See www.linearmotioneering.com for the motor mounting configurator.
${ }^{2}$ Above base.

MS46L

Lead Screw Drive, Ball Guide

" Ordering key - see page 197
" Accessories - see page 135

General Specifications	
Parameter	MS46L
Profile size ($w \times h$ [mm] ${ }^{1}$	86×46
Type of screw	lead screw
Carriage sealing system	none (optional bellows)
Screw supports	none
Lubrication	lubrication of screws and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

${ }^{1}$ Base width \times carriage height.

Performance Specifications		
Parameter		
Stroke length (Smax), maximum	$[\mathrm{mm}]$	821,3
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	0,83
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	9,8
Repeatability	$[\pm \mathrm{mm}]$	0,005
Accuracy	$[\pm \mathrm{mm}]$	$0,25 / 300 \mathrm{~mm}$
Input speed, maximum	$[\mathrm{rpm}]$	2000
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-80$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	133,4
Dynamic load (Fy), maximum	$[\mathrm{N}]$	450
Dynamic load (Fz), maximum	$[\mathrm{N}]$	450
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	13,9
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	11,6
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	23,6
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	533
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	0,59
Lead screw diameter (do)	$[\mathrm{mm}]$	12
Lead screw lead (p)	$[\mathrm{mm}]$	$3,10,25$
Weight of unit with zero stroke of every 100 mm of stroke of each carriage $[\mathrm{kg}]$		

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERVO99

Lead Screw Drive, Ball Guide

DETALL A

Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)

$L=S \max +143$

Total Length (A) and Profile Length (B)
$A=L+82,0 \quad B=L-36,5$

MS46B

" Ordering key - see page 198
" Accessories - see page 135

Ball Screw Drive, Ball Guide

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.

Definition of Forces

Toll Free Fax (877) SERV099

MS46B

Ball Screw Drive, Ball Guide

DETALL A

Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)
$L=S m a x+143$

Total Length (A) and Profile Length (B)
$A=L+82,0$

2DB08

" Ordering key - see page 199
" Accessories - see page 135

Lead Screw Drive, Ball Guide - Inch Interface

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.
Definition of Forces

General Specifications

Parameter	2DB08
Profile size $(w \times h)$ [inch]	4.50×1.625
Type of screw	lead screw
Carriage sealing system	none (optional bellows)
Screw supports	none
Lubrication	lubrication of screws and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

Performance Specifications		
Parameter		2DB08
Stroke length (Smax), maximum	[inch]	41
Linear speed, maximum	[inch/sec]	33.3
Acceleration, maximum	[inch/s ${ }^{\text {²] }}$]	385
Repeatability	[\pm inch]	0.0002
Accuracy	[\pm inch]	$0.007 / 11.81$ in
Input speed, maximum	[rpm]	2000
Operation temperature limits	[${ }^{\mathrm{F}]}$	-4-176
Dynamic load (Fx), maximum	[lbs]	20
Dynamic load (Fy), maximum	[lbs]	168
Dynamic load (Fz), maximum	[lbs]	336
Dynamic load torque (Mx), maximum	[lbf-in]	500
Dynamic load torque (My), maximum	[lbf-in]	500
Dynamic load torque (Mz), maximum	[lbf-in]	250
Drive shaft force (Frd), maximum ${ }^{1}$	[lbf]	50
Drive shaft torque (Mta), maximum	[lbf-in]	3.54
Lead screw diameter (do)	[inch]	0.375
Lead screw lead (p)	[inch]	$0.1,0.25,0.5,0.75,1$
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[lb]	$\begin{aligned} & 5.93 \\ & 1.16 \\ & 1.89 \end{aligned}$

[^4]
2DB08

Lead Screw Drive, Ball Guide - Inch Interface

Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)

L=Smax +7.0

2DB120

Ball Screw Drive, Ball Guide - Inch Interface

» Ordering key - see page 199
" Accessories - see page 135

General Specifications	
Parameter	2DB120
Profile size $(w \times h)[i n c h]$	6×2.125
Type of screw	ball screw
Carriage sealing system	none (optional bellows)
Screw supports	none
Lubrication	lubrication of screws and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

Performance Specifications		
Parameter		2DB120
Stroke length (Smax), maximum	[inch]	63
Linear speed, maximum	[inch/sec]	10.0
Acceleration, maximum	[inch/s ${ }^{\text {2 }}$]	385
Repeatability standard nut preloaded nut	[\pm inch]	$\begin{aligned} & 0.0020 \\ & 0.0002 \end{aligned}$
Accuracy	[\pm inch]	$0.002 / 12$ in
Input speed, maximum	[rpm]	3000
Operation temperature limits	[${ }^{\circ} \mathrm{F}$]	-4-176
Dynamic load (Fx), maximum	[lbs]	190
Dynamic load (Fy), maximum	[lbs]	1058
Dynamic load (Fz), maximum	[lbs]	2115
Dynamic load torque (Mx), maximum	[lbf-in]	4150
Dynamic load torque (My), maximum	[lbf-in]	4150
Dynamic load torque (Mz), maximum	[lbf-in]	2071
Drive shaft force (Frd), maximum ${ }^{1}$	[lbf]	120
Drive shaft torque (Mta), maximum	[lbf-in]	6.73
Ball screw diameter (do)	[inch]	0.5
Ball screw lead (p)		0.631
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[lb]	$\begin{gathered} 13.17 \\ 2.30 \\ 4.29 \end{gathered}$

${ }^{1}$ With radial mount option only.

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.
Definition of Forces

Ball Screw Drive, Ball Guide - Inch Interface

Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)

L = Smax +9.0

2DB12J

Ball Screw Drive, Ball Guide - Inch Interface

» Ordering key - see page 199
" Accessories - see page 135

General Specifications	
Parameter	2DB12J
Profile size $(w \times h)[i n c h]$	6×2.562
Type of screw	ball screw
Carriage sealing system	none (optional bellows)
Screw supports	none
Lubrication	lubrication of screws and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

Performance Specifications		
Parameter		2DB12J
Stroke length (Smax), maximum	[inch]	63
Linear speed, maximum	[inch/sec]	25.0
Acceleration, maximum	[inch/s ${ }^{\text {2 }}$]	385
Repeatability	[\pm inch]	0.0002
Accuracy	[\pm inch]	$0.002 / 12$ in
Input speed, maximum	[rpm]	3000
Operation temperature limits	[${ }^{\mathrm{F}]}$	-4-176
Dynamic load (Fx), maximum	[lbs]	375
Dynamic load (Fy), maximum	[lbs]	1058
Dynamic load (Fz), maximum	[lbs]	2115
Dynamic load torque (Mx), maximum	[lbf-in]	4150
Dynamic load torque (My), maximum	[lbf-in]	4150
Dynamic load torque (Mz), maximum	[lbf-in]	2071
Drive shaft force (Frd), maximum ${ }^{1}$	[lbf]	120
Drive shaft torque (Mta), maximum	[lbf-in]	33.19
Ball screw diameter (do)	[inch]	0.50
Ball screw lead (p)	[inch]	0.5
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[lb]	$\begin{aligned} & 13.58 \\ & 2.296 \\ & 4.850 \end{aligned}$

${ }^{1}$ With radial mount option only.

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.

Definition of Forces

Ball Screw Drive, Ball Guide - Inch Interface

Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)

$L=S m a x+9.0$

2DB160

Ball Screw Drive, Ball Guide - Inch Interface

» Ordering key - see page 199
" Accessories - see page 135

General Specifications	
Parameter	2DB160
Profile size $(w \times h)[i n c h]$	7.5×2.625
Type of screw	ball screw
Carriage sealing system	none (optional bellows)
Screw supports	none
Lubrication	lubrication of screws and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

Performance Specifications		
Parameter		2DB160
Stroke length (Smax), maximum	[inch]	84.5
Linear speed, maximum	[inch/sec]	8.3
Acceleration, maximum	[inch/s²]	385
Repeatability standard nut preloaded nut	[\pm inch]	$\begin{aligned} & 0.0020 \\ & 0.0002 \end{aligned}$
Accuracy	[\pm inch	$0.002 / 12$ in
Input speed, maximum	[rpm]	2500
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{F}\right]$	-4-176
Dynamic load (Fx), maximum	[lbs]	350
Dynamic load (Fy), maximum	[lbs]	1777
Dynamic load (Fz), maximum	[lbs]	3555
Dynamic load torque (Mx), maximum	[lbf-in]	8850
Dynamic load torque (My), maximum	[lbf-in]	8450
Dynamic load torque (Mz), maximum	[lbf-in]	4195
Drive shaft force (Frd), maximum ${ }^{1}$	[lbf]	120
Drive shaft torque (Mta), maximum	[lbf-in]	12.39
Ball screw diameter (do) inch diameters metric diameters	[inch] [mm]	$\begin{gathered} 0.75 \\ 20 \end{gathered}$
Ball screw lead (p) inch leads metric leads	[inch] [mm]	$\begin{aligned} & 0.2 \\ & 5,0 \end{aligned}$
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[lb]	$\begin{array}{r} 26.74 \\ 3.86 \\ 8.61 \end{array}$

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.
Definition of Forces

Ball Screw Drive, Ball Guide - Inch Interface

Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)

$L=S \max +11.5$

2DB16J

Ball Screw Drive, Ball Guide - Inch Interface

» Ordering key - see page 199
" Accessories - see page 135

General Specifications	
Parameter	2DB16J
Profile size $(w \times h)[i n c h]$	7.5×3.062
Type of screw	ball screw
Carriage sealing system	none (optional bellows)
Screw supports	none
Lubrication	lubrication of screws and guides
Included accessories	RediMount ${ }^{\text {TM }}$ kit

Performance Specifications		
Parameter		2DB16J
Stroke length (Smax), maximum	[inch]	84.5
Linear speed, maximum	[inch/sec]	41.67
Acceleration, maximum	[inch/s ${ }^{2}$]	385
Repeatability	[\pm inch]	0.0002
Accuracy	[\pm inch]	$0.002 / 12$ in
Input speed, maximum	[rpm]	2500
Operation temperature limits	[${ }^{\mathrm{F}}$]	-4-176
Dynamic load (Fx), maximum	[lbs]	350
Dynamic load (Fy), maximum	[lbs]	1777
Dynamic load (Fz), maximum	[lbs]	3555
Dynamic load torque (Mx), maximum	[lbf-in]	8877
Dynamic load torque (My), maximum	[lbf-in]	8098
Dynamic load torque (Mz), maximum	[lbf-in]	4053
Drive shaft force (Frd), maximum ${ }^{1}$	[lbf]	120
Drive shaft torque (Mta), maximum	[lbf-in]	30.98
Ball screw diameter (do)	[inch]	0.631, 0.750
Ball screw lead (p)	[inch]	0.5, 1.0
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[lb]	$\begin{array}{r} 25.73 \\ 3.86 \\ 7.70 \end{array}$

${ }^{1}$ With radial mount option only.

Deflection of the Profile

The unit must be continiously supported by a machined surface under its entire length.

Definition of Forces

2DB16J

Ball Screw Drive, Ball Guide - Inch Interface

Standard NEMA23 motor dimensions are shown. Other mounting sizes are available and easily configured. Please see www.linearmotioneering.com for details.

Ordering Length (L) and Maximum Stroke (Smax)
L = Smax + 11.5

Linear Motion Systems with Ball Screw Drive and Slide Guide

Overview

Features

- Can be installed in any orientation
- Self-adjusting stainless steel cover band
- Patented internal self-adjusting prism slide guides
- Wash down protected versions available.

Parameter		M55	M75	M100
Profile size (width \times height)	$[\mathrm{mm}]$	58×55	86×75	108×100
Stroke length (Smax), maximum	$[\mathrm{mm}]$	3000	4000	6000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	1,0	1,6	1,6
Dynamic carriage load (Fz), maximum	$[\mathrm{N}]$	400	1485	3005
Remarks		single ball nut	single ball nut	single ball nut
Page	74	76	78	

Linear Motion Systems with Ball Screw Drive and Slide Guide

Overview

M-Series Technical Presentation

M55

Ball Screw Drive, Slide Guide

» Ordering key - see page 200
" Accessories - see page 135
" Additional data - see page 183

General Specifications

Parameter	
Profile size $(w \times h)[\mathrm{mm}]$	58×55
Type of screw	ball screw with single nut
Carriage sealing system	self-adjusting steel cover band
Screw supports	number of screw supports to be specified by customer at order
Lubrication	lubrication of ball screw
Included accessories	none

Performance Specifications

Parameter		M55
Stroke length (Smax), maximum	$[\mathrm{mm}]$	3000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	1,0
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	8
Repeatability	$[\mathrm{mm}]$	0,05
Input speed, maximum	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-70$
Operation temperature limits	$[\mathrm{N}]$	1000
Dynamic load (Fx), maximum	$[\mathrm{N}]$	400
Dynamic load (Fy), maximum	$[\mathrm{N}]$	400
Dynamic load (Fz), maximum	$[\mathrm{Nm}]$	9
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	23
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	23
Dynamic load torque (Mz), maximum	$[\mathrm{N}]$	200
Drive shaft force (Frd), maximum	$[\mathrm{Nm}]$	12
Drive shaft torque (Mta), maximum	$[\mathrm{mm}]$	16
Screw diameter (do)	$[\mathrm{mm}]$	$5,10,20$
Screw lead (p)	$[\mathrm{kg}]$	3,06
Weight of unit with zero stroke of every 100 mm of stroke of carriage of option single screw support of option double screw supports		0,44

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]		
	0,10	0,15	0,30
500 - with screw supports	0,13	0,27	0,45
2			

M idle $=$ the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Critical Speed

1: No screw support required
L order [mm]
2: Single screw support required
3: Double screw supports required

Definition of Forces

Dimensions	Projection
METRIC	$\square \Theta$

Ball Screw Drive, Slide Guide

A1: lubrication holes
A2: $\varnothing 9,5 / \varnothing 5,5$ for socket head cap screw M5

Screw support configuration	A $[\mathbf{m m}]$	B $[\mathbf{m m}]$	Ordering length (L order) $[\mathbf{m m}]$	Total length (L tot) $[\mathbf{m m}]$
No screw support	6	6	L order $=S m a x+A+B+184$	L tot $=L$ order +70
Single screw support	32	32	L order $=S m a x+A+B+184$	L tot $=L$ order +70
Double screw supports	83	83	L order $=S m a x+A+B+184$	L tot $=L$ order +70

Double Carriages

Parameter		M55
Minimum distance between carriages (Lc)	$[\mathrm{mm}]$	200
Dynamic load (Fy), maximum	$[\mathrm{N}]$	600
Dynamic load (Fz), maximum	$[\mathrm{N}]$	600
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 0,3$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 0,3$
Force required to move second carriage	$[\mathrm{N}]$	35
Weight of unit with zero stroke of carriages	$[\mathrm{kg}]$	

Screw support configuration	A [mm]	B [mm]
No screw support	6	6
Single screw support	32	32
Double screw supports	83	83

Ordering length (L order) $[\mathbf{m m}]$	Total length $(L$ tot $)[$ mm]
L order $=S m a x+A+B+L c+184$	L tot $=L$ order +70
L order $=S m a x+A+B+L c+184$	L tot $=L$ order +70
L order $=S m a x+A+B+L c+184$	L tot $=L$ order +70

M75

Ball Screw Drive, Slide Guide

General Specifications

Parameter	M75
Profile size $(w \times h)[\mathrm{mm}]$	86×75
Type of screw	ball screw with single nut
Carriage sealing system	self-adjusting steel cover band
Screw supports	number of screw supports to be specified by customer at order
Lubrication	lubrication of ball screw
Included accessories	

Performance Specifications

Parameter		M75
Stroke length (Smax), maximum	$[\mathrm{mm}]$	4000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	1,6
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	8
Repeatability	$[\mathrm{mm}]$	0,05
Input speed, maximum	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-70$
Operation temperature limits	$[\mathrm{N}]$	2500
Dynamic load (Fx), maximum	$[\mathrm{N}]$	1485
Dynamic load (Fy), maximum	$[\mathrm{N}]$	1485
Dynamic load (Fz), maximum	$[\mathrm{Nm}]$	49
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	85
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	85
Dynamic load torque (Mz), maximum	$[\mathrm{N}]$	600
Drive shaft force (Frd), maximum	$[\mathrm{Nm}]$	30
Drive shaft torque (Mta), maximum	$[\mathrm{mm}]$	20
Screw diameter (do)	$[\mathrm{mm}]$	$5,12,7,20$
Screw lead (p)	$[\mathrm{kg}]$	6,07
Weight of unit with zero stroke of every 100 mm of stroke of carriage of option single screw support of option double screw supports		0,82

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]		
	0,10	0,24	0,37
500 - with screw supports	0,15	0,39	0,57

$\mathrm{Midle}=$ the input torque needed to move the carriage with no load on it.
» Ordering key - see page 200
" Accessories - see page 135
" Additional data - see page 183

Deflection of the Profile

Critical Speed

1: No screw support required

2. Single screw support required

3: Double screw supports required

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

Linear Motion Systems
sales@electromate.com

M75

Dimensions	Projection
METRIC	$\square \odot$

Ball Screw Drive, Slide Guide

A1: lubrication holes
A2: ø13,5/ø8,5 for socket head cap screw M8

| Screw support configuration | A $\mathbf{m m}]$ | B $[\mathbf{m m}]$ | Ordering length (L order) $[\mathbf{m m}]$ | Total length (L tot) $[\mathbf{m m}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No screw support | 5 | 5 | L order $=S m a x+A+B+218$ | L tot $=L$ order +78 |
| Single screw support | 60 | 60 | L order $=S m a x+A+B+218$ | L tot $=L$ order +78 |
| Double screw supports | 126 | 126 | L order $=S m a x+A+B+218$ | L tot $=L$ order +78 |

Double Carriages

Parameter		M75
Minimum distance between carriages (Lc)	$[\mathrm{mm}]$	250
Dynamic load (Fy), maximum	$[\mathrm{N}]$	2227
Dynamic load (Fz), maximum	$[\mathrm{N}]$	2227
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 1,114$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 1,114$
Force required to move second carriage	$[\mathrm{N}]$	40
Weight of unit with zero stroke of carriages	$[\mathrm{kg}]$	

| Screw support configuration | A $[\mathbf{m m}]$ | B $[\mathbf{m m}]$ | Ordering length (L order) $[\mathbf{m m}]$ | Total length (L tot) $[\mathbf{m m}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No screw support | 5 | 5 | L order $=S m a x+A+B+L c+218$ | L tot $=L$ order +78 |
| Single screw support | 60 | 60 | L order $=S m a x+A+B+L c+218$ | L tot $=L$ order +78 |
| Double screw supports | 126 | 126 | L order $=S m a x+A+B+L c+218$ | L tot $=L$ order +78 |

M100

Ball Screw Drive, Slide Guide

" 0 » Ordering key - see page 200
" Accessories - see page 135
" Additional data - see page 183

General Specifications

Parameter	M100
Profile size $(w \times h)[\mathrm{mm}]$	108×100
Type of screw	ball screw with single nut
Carriage sealing system	self-adjusting steel cover band
Screw supports	number of screw supports to be specified by customer at order
Lubrication	lubrication of ball screw
Included accessories	none

Performance Specifications

Parameter		M100
Stroke length (Smax), maximum	$[\mathrm{mm}]$	6000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	1,6
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	8
Repeatability	$[\mathrm{mm}]$	0,05
Input speed, maximum	4000	
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-70$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	5000
Dynamic load (Fy), maximum	$[\mathrm{N}]$	3005
Dynamic load (Fz), maximum	$[\mathrm{N}]$	3005
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	117
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	279
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	279
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	1000
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	45
Screw diameter (do)	$[\mathrm{mm}]$	25
Screw lead (p)	$[\mathrm{mm}]$	$5,10,25$
Weight of unit with zero stroke of every 100 mm of stroke of carriage of option single screw support of option double screw supports	$[\mathrm{kg}]$	12,87

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]		
	0,15	0,25	0,55
500 - with screw supports	0,25	0,40	0,85

$\mathrm{Midle}=$ the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Critical Speed

1: No screw support required
2: Single screw support required
3: Double screw supports required

Definition of Forces

ELECTROMATE

Dimensions	Projection
METRIC	$\square \Theta$

Ball Screw Drive, Slide Guide

A1: lubrication holes
A2: ø17/ø10,5 for socket head cap screw M10

Screw support configuration	A [mm]	B [mm]
No screw support	1	1
Single screw support	31	31
Double screw supports	86	86

A3: 100 (L order <= 1 m), 320 (L order > 1 m)
A4: 100 (L order <= 1 m), 430 (L order > 1 m)

Ordering length $(\mathbf{L}$ order $)[\mathbf{m m}]$	Total length $(\mathbf{L}$ tot $)[\mathbf{m m}]$
L order $=S$ max $+A+B+306$	L tot $=L$ order +88
L order $=S m a x+A+B+306$	L tot $=L$ order +88
L order $=S m a x+A+B+306$	L tot $=L$ order +88

Double Carriages

Parameter		M100
Minimum distance between carriages (Lc)	$[\mathrm{mm}]$	350
Dynamic load (Fy), maximum	$[\mathrm{N}]$	4508
Dynamic load (Fz), maximum	$[\mathrm{N}]$	4508
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 2,254$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 2,254$
Force required to move second carriage	$[\mathrm{N}]$	45
Weight of unit with zero stroke of carriages	$[\mathrm{kg}]$	

Screw support configuration	A [mm]	B [mm]	Ordering length (L order) [mm]	Total length (L tot) [mm]
No screw support	1	1	L order $=$ Smax + A $+B+L c+306$	L tot $=$ L order +88
Single screw support	31	31	Lorder $=$ Smax $+A+B+L c+306$	L tot $=$ L order + 88
Double screw supports	86	86	L order $=$ Smax + A + B + Lc +306	L tot $=$ L order + 88

[^5]
Linear Motion Systems with Belt Drive and Ball Guide

Overview

SpeedLine WH

Features

- Can be installed in any orientation
- Stroke up to 2 m
- Acceleration up to $40 \mathrm{~m} / \mathrm{s}^{2}$
- Compact

Parameter		WH40	
Profile size (width \times height	$[\mathrm{mm}]$	40×40	
Stroke length (Smax), maximum	$[\mathrm{mm}]$	2000	
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	3,0	
Dynamic carriage load (Fz), maximum	$[\mathrm{N}]$		600
Remarks			no cover band
Page		82	

Features

- Can be installed in any orientation
- Stroke up to 5,5 m
- Speed up to $5 \mathrm{~m} / \mathrm{s}$
- Patented plastic cover band

| Parameter | | WM60Z | WM80Z |
| :--- | :---: | :---: | :---: | :---: |
| Profile size (width \times height $)$ | $[\mathrm{mm}]$ | 60×60 | 80×80 |
| Stroke length (Smax), maximum | $[\mathrm{mm}]$ | 4000 | 5500 |
| Linear speed, maximum | $[\mathrm{m} / \mathrm{s}]$ | 2,5 | 5,0 |
| Dynamic carriage load (Fz), maximum | $[\mathrm{N}]$ | 1400 | 2100 |
| Remarks | | - | - |
| Page | | 84 | 86,88 |

Movopart M

Features

- Can be installed in any orientation
- Self-adjusting stainless steel cover band
- Stroke up to 12 m
- Wash down protected versions available.

Parameter		M55	M75	M100
Profile size (width \times height)	$[\mathrm{mm}]$	58×55	86×75	108×100
Stroke length (Smax), maximum	$[\mathrm{mm}]$	7000	12000	12000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	5,0	5,0	5,0
Dynamic carriage load (Fz), maximum	$[\mathrm{N}]$	750	1750	4000
Remarks		-	-	-
Page		90	92	94

Linear Motion Systems with Belt Drive and Ball Guide

Overview

ForceLine MLSM

Features

- Can be installed in any orientation
- Patented plastic cover band
- High load capabilities
- Low profile height

| Parameter | | MLSM80Z |
| :--- | :---: | :---: | :---: |
| Profile size (width \times height) | $[\mathrm{mm}]$ | 240×85 |
| Stroke length (Smax), maximum | $[\mathrm{mm}]$ | 5900 |
| Linear speed, maximum | $[\mathrm{m} / \mathrm{s}]$ | 5,0 |
| Dynamic carriage load (Fz), maximum | $[\mathrm{N}]$ | 6400 |
| Remarks | | - |
| Page | | 96 |

WMZ-Series Technical Presentation

Cover band

The patented self-adjusting
cover band protects the interior of the unit
from the penetration of dirt, dust and liquids.

Central lubrication

One central lubrication point on the carriage services the entire unit resulting in a minimum maintenace requirement.

Belt drive

The belt is protected from the outside ensuring long, accurate and safe operation.

Ball guides

Integrated patented ball guides with hardened steel tracks for optimum performance.

WH4O

Belt Drive, Ball Guide

General Specifications

Parameter	WH40
Profile size $(w \times h)[\mathrm{mm}]$	40×40
Type of belt	10 AT 5
Carriage sealing system	none
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WH40
Stroke length (Smax), maximum	[mm]	2000
Linear speed, maximum	[m/s]	3,0
Acceleration, maximum	[m/s ${ }^{2}$]	40
Repeatability	[$\pm \mathrm{mm}$]	0,05
Input speed, maximum	[rpm]	1800
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load (Fx), maximum	[N]	$315{ }^{1}$
Dynamic load (Fy), maximum	[N]	450
Dynamic load (Fz), maximum	[N]	600
Dynamic load torque (Mx), maximum	[Nm]	10
Dynamic load torque (My), maximum	[Nm]	30
Dynamic load torque (Mz), maximum	[Nm]	30
Drive shaft force (Frd), maximum	[N]	100
Drive shaft torque (Mta), maximum	[Nm]	6
Pulley diameter	[mm]	31,83
Stroke per shaft revolution	[mm]	100
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{aligned} & 1,19 \\ & 0,15 \\ & 0,28 \end{aligned}$

${ }^{1}$ See diagram Force Fx

Carriage Idle Torque, (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	0,1
900	0,3
1800	0,6

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Force Fx as a Function of the Speed

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

WH4O

Belt Drive, Ball Guide

A1: depth 10
A2: depth 3
A3: lubricating nipple on both sides

Long Carriage

Parameter		WH40
Carriage length	$[\mathrm{mm}]$	210
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	50
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	50
Weight	$[\mathrm{kg}]$	0,43

Double Carriages

Parameter		WH40
Minimum distance between carriages (La)	$[\mathrm{mm}]$	135
Dynamic load (Fy), maximum	$[\mathrm{N}]$	900
Dynamic load (Fz), maximum	$[\mathrm{N}]$	1200
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 0,45$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 0,60$
Force required to move second carriage	$[\mathrm{N}]$	2
Total length (L tot)	$[\mathrm{mm}]$	Smax $+265+\mathrm{L} \mathrm{A}$
'Value in mm		

[^6]A4: socket cap screw ISO4762-M5×12 8.8
A5: ENF inductive sensor rail kit (optional - see page 172)

A1: depth 10

WM60Z

Belt Drive, Ball Guide, Short Carriage

» Ordering key - see page 202
" Accessories - see page 135
" Additional data - see page 183

General Specifications

Parameter	WM60Z
Profile size $(w \times h)[\mathrm{mm}]$	60×60
Type of belt	20 ATL 5
Carriage sealing system	self-adjusting plastic cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WM60Z
Stroke length (Smax), maximum	[mm]	4000
Linear speed, maximum	[m/s]	2,5
Acceleration, maximum	[m/s ${ }^{2}$]	20
Repeatability	[$\pm \mathrm{mm}$]	0,05
Input speed, maximum	[rpm]	1250
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load (Fx), maximum	[N]	850
Dynamic load (Fy), maximum	[N]	$1400{ }^{1}$
Dynamic load (Fz), maximum	[N]	1400
Dynamic load torque (Mx), maximum	[Nm]	25
Dynamic load torque (My), maximum	[Nm]	50
Dynamic load torque (Mz), maximum	[Nm]	50
Drive shaft force (Frd), maximum	[N]	150
Drive shaft torque (Mta), maximum	[Nm]	17
Pulley diameter	[mm]	38,20
Stroke per shaft revolution	[mm]	120
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{aligned} & 4,30 \\ & 0,45 \\ & 1,25 \end{aligned}$

${ }^{1}$ See diagram Force Fx

Input speed [rpm]	Idle torque [Nm]
150	1,6
600	2,5
1250	3,0
M idle $=$ the input torque needed to move the carriage with no load on it.	

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Force Fx as a Function of the Speed

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

WM60Z

Belt Drive, Ball Guide, Short Carriage

A1: depth 15
A2: depth 4
A3: depth 11
A4: socket cap screw ISO4762-M6×20 8.8

A5: ENF inductive sensor rail kit (optional - see page 172)
A6: tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature A7: can be changed over to one of three alternative lubrications points by the customer

Double Short Carriages

Parameter		WM60Z
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	255
Dynamic load (Fy), maximum	$[\mathrm{N}]$	2800
Dynamic load (Fz), maximum	$[\mathrm{N}]$	2800
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 1,4$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 1,4$
Force required to move second carriage	$[\mathrm{N}]$	18
Total length (L tot)	$[\mathrm{mm}]$	Smax $+420+\mathrm{LA}$

[^7]
WM80Z

Belt Drive, Ball Guide, Standard Carriage

» Ordering key - see page 202
" Accessories - see page 135
" Additional data - see page 183

General Specifications

Parameter	WM80Z
Profile size $(w \times h)[\mathrm{mm}]$	80×80
Type of belt	25 AT 10
Carriage sealing system	self-adjusting plastic cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WM80Z
Stroke length (Smax), maximum	[mm]	5400
Linear speed, maximum	[m/s]	5,0
Acceleration, maximum	[m/s ${ }^{2}$]	20
Repeatability	[$\pm \mathrm{mm}$]	0,05
Input speed, maximum	[rpm]	885
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load (Fx), maximum	[N]	1470
Dynamic load (Fy), maximum	[N]	$3000{ }^{1}$
Dynamic load (Fz), maximum	[N]	3000
Dynamic load torque (Mx), maximum	[Nm]	150
Dynamic load torque (My), maximum	[Nm]	300
Dynamic load torque (Mz), maximum	[Nm]	300
Drive shaft force (Frd), maximum	[N]	600
Drive shaft torque (Mta), maximum	[Nm]	40
Pulley diameter	[mm]	54,11
Stroke per shaft revolution	[mm]	170
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{gathered} 11,2 \\ 0,8 \\ 3,4 \end{gathered}$

${ }^{1}$ See diagram Force Fx

Carriage Idle Torque, (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	6,5
450	7,7
885	9,3
M idle $=$ the input torque needed to move the carriage with no load on it.	

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Force Fx as a Function of the Speed

Definition of Forces

Toll Free Fax (877) SERV099
Linear Motion Systems
sales@electromate.com

WM80Z

Dimensions	Projection
METRIC	
M	

Belt Drive, Ball Guide, Standard Carriage

A5: ENF inductive sensor rail kit (optional - see page 172)
A6: tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature A7: can be changed over to one of three alternative lubrications points by the customer
A2: depth 2,5
A3: depth 12
A4: socket cap screw IS04762-M6×20 8.8

Long Carriage		
Parameter		WM80Z
Carriage length	$[\mathrm{mm}]$	450
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	750
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	750
Weight	$[\mathrm{kg}]$	5,1

A1: depth 12 mm

Double Carriages

Parameter		WM80Z
Minimum distance between carriages (L_{A})	[mm]	360
Dynamic load (Fy), maximum	[N]	6000
Dynamic load (Fz), maximum	[N]	6000
Dynamic load torque (My), maximum	[Nm]	$L \mathrm{~A}^{1} \times 3$
Dynamic load torque (Mz), maximum	[Nm]	$L A^{\prime} \times 3$
Force required to move second carriage	[N]	25
Total length (L tot)	[mm]	Smax + $590+\mathrm{LA}$

[^8]
WM80Z

Belt Drive, Ball Guide, Short Carriage

» Ordering key - see page 202
" Accessories - see page 135
" Additional data - see page 183

General Specifications

Parameter	WM80Z
Profile size $(w \times h)[\mathrm{mm}]$	80×80
Type of belt	25 AT 10
Carriage sealing system	self-adjusting plastic cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WM80Z
Stroke length (Smax), maximum	$[\mathrm{mm}]$	5500
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	5,0
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	20
Repeatability	$[\mathrm{mm}]$	0,05
Input speed, maximum	885	
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	1470
Dynamic load (Fy), maximum	$[\mathrm{N}]$	$2100{ }^{1}$
Dynamic load (Fz), maximum	$[\mathrm{N}]$	2100
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	68
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	135
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	135
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	600
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	40
Pulley diameter	$[\mathrm{mm}]$	54,11
Stroke per shaft revolution	$[\mathrm{mm}]$	170
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	$[\mathrm{kg}]$	
年		9,2

${ }^{1}$ See diagram Force Fx

Carriage Idle Torque, (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	4,0
450	5,4
885	6,2
M idle $=$ the input torque needed to move the carriage with no load on it.	

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Force Fx as a Function of the Speed

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

WM80Z

Belt Drive, Ball Guide, Short Carriage

A1: depth 15
A2: depth 2,5
A3: depth 12
A4: socket cap screw IS04762-M6×20 8.8

A5: ENF inductive sensor rail kit (optional - see page 172)
A6: tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature A7: can be changed over to one of three alternative lubrications points by the customer

Double Short Carriages

Parameter		WM80Z
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	280
Dynamic load (Fy), maximum	$[\mathrm{N}]$	4200
Dynamic load (Fz), maximum	$[\mathrm{N}]$	4200
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 2,1$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 2,1$
Force required to move second carriage	$[\mathrm{N}]$	22,5
Total length (L tot)	$[\mathrm{mm}]$	Smax $+490+\mathrm{L} \mathrm{A}$
'Value in mm		

[^9]
ELECTROMATE

M55

Belt Drive, Ball Guide

General Specifications

Parameter	M55
Profile size $(w \times h)[\mathrm{mm}]$	58×55
Type of belt	22-STD SM5-HP
Carriage sealing system	self-adjusting steel cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubrication of ball guide carriages
Included accessories	none

Performance Specifications

Parameter		M55
Stroke length (Smax), maximum	[mm]	7000
Linear speed, maximum	[m/s]	5,0
Acceleration, maximum	[m/s ${ }^{2}$]	40
Repeatability	[$\pm \mathrm{mm}$]	0,1
Input speed, maximum	[rpm]	2850
Operation temperature limits	[${ }^{\text {C }}$]	-20-70
$\begin{aligned} & \text { Dynamic load (Fx), maximum } \\ & <2,5 \mathrm{~m} / \mathrm{s} \\ & >2,5 \mathrm{~m} / \mathrm{s} \end{aligned}$	[N]	$\begin{aligned} & 400 \\ & 200 \end{aligned}$
Dynamic load (Fy), maximum	[N]	750
Dynamic load (Fz), maximum	[N]	750
Dynamic load torque (Mx), maximum	[Nm]	5
Dynamic load torque (My), maximum	[Nm]	29
Dynamic load torque (Mz), maximum	[Nm]	29
Drive shaft force (Frd), maximum	[N]	200
Drive shaft torque (Mta), maximum	[Nm]	12
Pulley diameter	[mm]	33,42
Stroke per shaft revolution	[mm]	105
Weight of unit with zero stroke of every 100 mm of stroke of carriage	[kg]	$\begin{aligned} & 4,80 \\ & 0,53 \\ & 1,20 \end{aligned}$

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Single Carriage	Double Carriages
150	1,0	1,9

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Definition of Forces

M55

Belt Drive, Ball Guide

A1: lubrication holes
A2: $\varnothing 9,5 / \varnothing 5,5$ for socket head cap screw M5

Double Carriages

Parameter		M55
Minimum distance between carriages (Lc)	$[\mathrm{mm}]$	250
Dynamic load (Fy), maximum	$[\mathrm{N}]$	1125
Dynamic load (Fz), maximum	$[\mathrm{N}]$	1125
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 0,56$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 0,56$
Force required to move second carriage	$[\mathrm{N}]$	2
Ordering length (L order)	$[\mathrm{mm}]$	Smax + Lc + 320
Total length (L tot]	$[\mathrm{mm}]$	L order +52
Weight of unit with zero stroke of carriages	$[\mathrm{kg}]$	

[^10]
M75

Belt Drive, Ball Guide

General Specifications

Parameter	M75 / T75
Profile size $(w \times h)[\mathrm{mm}]$	86×75
Type of belt	STD5-40
Carriage sealing system	self-adjusting steel cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubrication of ball guide carriages
Included accessories	none

Performance Specifications

Parameter		M75
Stroke length (Smax), maximum	$[\mathrm{mm}]$	12000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	5,0
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	40
Repeatability	$[\mathrm{mm}]$	0,1
Input speed, maximum	2300	
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-70$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	
<2,5 m/s		
2,5 m/s		900
Dynamic load (Fy), maximum	$[\mathrm{N}]$	1750
Dynamic load (Fz), maximum	$[\mathrm{N}]$	1750
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	16
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	84
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	84
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	600
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	30
Pulley diameter	$[\mathrm{mm}]$	41,38
Stroke per shaft revolution	$[\mathrm{mm}]$	130
Weight of unit with zero stroke of every 100 mm of stroke of carriage	$[\mathrm{kg}]$	

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Single Carriage	Double Carriages
150	1,0	1,9

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Definition of Forces

Belt Drive, Ball Guide

A1: lubrication holes
A2: ø13,5/ø8,5 for socket head cap screw M8

Double Carriages

Parameter		M75
Minimum distance between carriages (Lc)	$[\mathrm{mm}]$	250
Dynamic load (Fy), maximum	$[\mathrm{N}]$	2625
Dynamic load (Fz), maximum	$[\mathrm{N}]$	2625
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 1,313$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 1,313$
Force required to move second carriage	$[\mathrm{N}]$	2
Ordering length (L order)	$[\mathrm{mm}]$	Smax + Lc +315
Total length (L tot]	$[\mathrm{mm}]$	L order +52
Weight of unit with zero stroke of carriages	$[\mathrm{kg}]$	
1 Vainmm		

ELECTROMATE

M100

Belt Drive, Ball Guide

General Specifications

Parameter	M100
Profile size $(w \times h)[\mathrm{mm}]$	108×100
Type of belt	STD8-50
Carriage sealing system	self-adjusting steel cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubrication of ball guide carriages
Included accessories	none

Performance Specifications

Parameter		M100
Stroke length (Smax), maximum	$[\mathrm{mm}]$	12000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	5,0
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	40
Repeatability	$[\mathrm{mm}]$	0,1
Input speed, maximum	1700	
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-70$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	
<2,5 m/s		
2,5 m/s		1250
Dynamic load (Fy), maximum	$[\mathrm{N}]$	4000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	4000
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	43
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	280
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	280
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	1000
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	45
Pulley diameter	$[\mathrm{mm}]$	56,02
Stroke per shaft revolution	$[\mathrm{mm}]$	176
Weight of unit with zero stroke of every 100 mm of stroke of carriage	$[\mathrm{kg}]$	

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Single Carriage	Double Carriages
150	1,6	3,1

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Definition of Forces

Dimensions	Projection
METRIC	
M	

Belt Drive, Ball Guide

A1: lubrication hole
A2: lubrication hole (no hole if L order is < 856 mm)
A3: $\varnothing 17 / \varnothing 10,5$ for socket head cap screw M10

Double Carriages

Parameter		M100
Minimum distance between carriages (Lc)	[mm]	350
Dynamic load (Fy), maximum	[N]	6000
Dynamic load (Fz), maximum	[N]	6000
Dynamic load torque (My), maximum	[Nm]	$\mathrm{Lc}^{1} \times 3$
Dynamic load torque (Mz), maximum	[Nm]	$\mathrm{Lc}^{1} \times 3$
Force required to move second carriage	[N]	2
Ordering length (L order)	[mm]	Smax $+L c+405$
Total length (L tot]	[mm]	L order + 56
Weight of unit with zero stroke of carriagess	[kg]	$\begin{gathered} 18,92 \\ 4,40 \end{gathered}$

[^11]
MLSM80Z

Belt Drive, Ball Guide

» Ordering key - see page 204
" Accessories - see page 135
" Additional data - see page 183

General Specifications

Parameter	MLSM80Z
Profile size $(w \times h)[\mathrm{mm}]$	240×85
Type of belt	75 ATL 10
Carriage sealing system	plastic cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		MLSM80Z
Stroke length (Smax), maximum	$[\mathrm{mm}]$	5900
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	5,0
Acceleration, maximum	$[\pm \mathrm{mm}]$	0,05
Repeatability	$[\mathrm{rpm}]$	1500
Input speed, maximum	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Operation temperature limits	$[\mathrm{N}]$	$5000{ }^{1}$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	6400
Dynamic load (Fy), maximum	$[\mathrm{N}]$	6400
Dynamic load (Fz), maximum	$[\mathrm{Nm}]$	600
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	720
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	720
Dynamic load torque (Mz), maximum	$[\mathrm{N}]$	700
Drive shaft force (Frd), maximum	$[\mathrm{Nm}]$	150
Drive shaft torque (Mta), maximum	$[\mathrm{mm}]$	63,66
Pulley diameter	$[\mathrm{mm}]$	200
Stroke per shaft revolution	$[\mathrm{kg}]$	
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	30,8	2,2 9,6

${ }^{1}$ See diagram Force Fx

Carriage Idle Torque, (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	8,5
750	12
1500	14,5

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Force Fx as a Function of the Speed

Definition of Forces

MLSM80Z

Belt Drive, Ball Guide

A1: depth 18
A2: depth 4
A3: depth 15
A4: socket cap screw ISO4762-M8×20 8.8

Long Carriage

Parameter		MLSM80Z
Carriage length	$[\mathrm{mm}]$	500
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	1400
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	1400
Weight	$[\mathrm{kg}]$	14

Double Carriages

Parameter		MLSM80Z
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	400
Dynamic load (Fy), maximum	$[\mathrm{N}]$	12800
Dynamic load (Fz), maximum	$[\mathrm{N}]$	12800
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 6,4$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 6,4$
Force required to move second carriage	$[\mathrm{N}]$	35
Total length (L tot)	$[\mathrm{mm}]$	Smax $+600+$ L A

[^12]A5: ENF inductive sensor rail kit (optional - see page 172)
A6: tapered lubricating nipple to DIN71412 M8×1 on fixed-bearing side as standard feature A7: can be changed over to one of the three alternative lubricating points by the customer

A1: depth 15

Linear Motion Systems with Belt Drive and Slide Guide

Overview

Features

- Can be installed in any orientation
- Patented self-adjusting prism slide guides
- Resistant to shock loads and vibrations
- Low cost

Parameter		M50	
Profile size (width \times height)	$[\mathrm{mm}]$	50×50	
Stroke length (Smax), maximum	$[\mathrm{mm}]$	5000	
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	5,0	
Dynamic carriage load (Fz), maximum	$[\mathrm{N}]$	400	
Remarks			no cover band
Page		100	

Movopart M

Features

- Can be installed in any orientation
- Self-adjusting stainless steel cover band
- Patented self-adjusting prism slide guides
- Wash down and enhanced wash down protected versions available

Parameter		M55	M75	M100
Profile size (width \times height)	$[\mathrm{mm}]$	58×55	86×75	108×100
Stroke length (Smax), maximum	$[\mathrm{mm}]$	7000	12000	12000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	5,0	5,0	5,0
Dynamic carriage load (Fz), maximum	$[\mathrm{N}]$	400	1485	3005
Remarks		-	-	-
Page		102	104	106

Linear Motion Systems with Belt Drive and Slide Guide

Overview

M-Series Technical Presentation

Cover band

The self-adjusting magnetically sealed stainless steel cover band protects the unit from the penetration of dirt, dust and liquids.

Environmental protection

The standard unit can operate in harsh environments but is also available in wash down or enhanced wash down protected versions for the thoughest environments.

Belt drive

The belt runs on the inside of the profile and can easily be re-tensioned without removing the load from the carriage.

Prism slide guides

The patented self aligning prism slide guides are accurate, durable and are resistant to vibrations and shock loads.

ELECTROMATE

M50

Belt Drive, Slide Guide

General Specifications

Parameter	M50
Profile size $(w \times h)[\mathrm{mm}]$	50×50
Type of belt	GT 5MR-19
Carriage sealing system	none
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubricated for life
Included accessories	

Performance Specifications

Parameter		M50
Stroke length (Smax), maximum	[mm]	5000
Linear speed, maximum	[m/s]	5,0
Acceleration, maximum	[m/s ${ }^{2}$]	40
Repeatability	[$\pm \mathrm{mm}$]	0,2
Input speed, maximum	[rpm]	2300
Operation temperature limits	[${ }^{\circ} \mathrm{C}$]	-20-70
$\begin{aligned} & \text { Dynamic load (Fx), maximum } \\ & <2,5 \mathrm{~m} / \mathrm{s} \\ & >2,5 \mathrm{~m} / \mathrm{s} \end{aligned}$	[N]	$\begin{aligned} & 400 \\ & 200 \end{aligned}$
Dynamic load (Fy), maximum	[N]	400
Dynamic load (Fz), maximum	[N]	400
Dynamic load torque (Mx), maximum	[Nm]	5
Dynamic load torque (My), maximum	[Nm]	21
Dynamic load torque (Mz), maximum	[Nm]	21
Drive shaft force (Frd), maximum	[N]	350
Drive shaft torque (Mta), maximum	[Nm]	10
Pulley diameter	[mm]	41,38
Stroke per shaft revolution	[mm]	130
Weight of unit with zero stroke of every 100 mm of stroke of carriage	[kg]	$\begin{aligned} & 0,71 \\ & 0,96 \\ & 0,33 \end{aligned}$

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	2,1

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Definition of Forces

Belt Drive, Slide Guide

A1: depth 8,5
A2: $\varnothing 6,5$ for M6 screw
A3: depth 9, Heli coil

M55

Belt Drive, Slide Guide

General Specifications

Parameter	M55
Profile size $(w \times h)[\mathrm{mm}]$	58×50
Type of belt	22-STD SM5-HP
Carriage sealing system	self-adjusting steel cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubricated for life
Included accessories	none

Performance Specifications

Parameter		M55
Stroke length (Smax), maximum	$[\mathrm{mm}]$	7000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	5,0
Acceleration, maximum	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	40
Repeatability	$[\mathrm{mm}]$	0,2
Input speed, maximum	2850	
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20-70$
Dynamic load (Fx), maximum <2,5 m/s $>2,5 \mathrm{~m} / \mathrm{s}$	$[\mathrm{N}]$	
Dynamic load (Fy), maximum	$[\mathrm{N}]$	400
Dynamic load (Fz), maximum	$[\mathrm{N}]$	400
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	900
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	9
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	2
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	2
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	200
Pulley diameter	$[\mathrm{mm}]$	33,42
Stroke per shaft revolution	$[\mathrm{mm}]$	105
Weight of unit with zero stroke of every 100 mm of stroke of carriage	$[\mathrm{kg}]$	4,10
0,41		

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Single Carriage	Double Carriages
150	2,1	3,8

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Definition of Forces

M55

Belt Drive, Slide Guide

A1: lubrication holes
A2: ø9,5/ø5,5 for socket head cap screw M5

Double Carriages

Parameter		M55
Minimum distance between carriages (Lc)	$[\mathrm{mm}]$	200
Dynamic load (Fy), maximum	$[\mathrm{N}]$	600
Dynamic load (Fz), maximum	$[\mathrm{N}]$	600
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 0,3$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{Lc}^{1} \times 0,3$
Force required to move second carriage	$[\mathrm{N}]$	35
Ordering length (L order)	$[\mathrm{mm}]$	Smax + Lc + 260
Total length (L tot]	$[\mathrm{mm}]$	L order +53
Weight of unit with zero stroke of carriages	$[\mathrm{kg}]$	
Value in mm		6,00

M75

Belt Drive, Slide Guide

General Specifications

Parameter	M75
Profile size $(w \times h)[\mathrm{mm}]$	86×75
Type of belt	STD5-40
Carriage sealing system	self-adjusting steel cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubricated for life
Included accessories	none

Performance Specifications

Parameter		M75
Stroke length (Smax), maximum	[mm]	12000
Linear speed, maximum	[m/s]	5,0
Acceleration, maximum	[m/s ${ }^{2}$]	40
Repeatability	[$\pm \mathrm{mm}$]	0,2
Input speed, maximum	[rpm]	2300
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	-20-70
Dynamic load (Fx), maximum $\begin{aligned} & <2,5 \mathrm{~m} / \mathrm{s} \\ & >2,5 \mathrm{~m} / \mathrm{s} \end{aligned}$	[N]	$\begin{aligned} & 900 \\ & 450 \end{aligned}$
Dynamic load (Fy), maximum	[N]	1485
Dynamic load (Fz), maximum	[N]	1485
Dynamic load torque (Mx), maximum	[Nm]	49
Dynamic load torque (My), maximum	[Nm]	85
Dynamic load torque (Mz), maximum	[Nm]	85
Drive shaft force (Frd), maximum	[N]	600
Drive shaft torque (Mta), maximum	[Nm]	30
Pulley diameter	[mm]	41,38
Stroke per shaft revolution	[mm]	130
Weight of unit with zero stroke of every 100 mm of stroke of carriage	[kg]	$\begin{aligned} & 6,30 \\ & 0,67 \\ & 1,50 \end{aligned}$

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Single Carriage	Double Carriages
150	2,2	4,0

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Definition of Forces

M75

Belt Drive, Slide Guide

A1: lubrication holes
A2: ø13,5/ø8,5 for socket head cap screw M8

Double Carriages

Parameter		M75
Minimum distance between carriages (Lc)	[mm]	250
Dynamic load (Fy), maximum	[N]	2227
Dynamic load (Fz), maximum	[N]	2227
Dynamic load torque (My), maximum	[Nm]	$\mathrm{Lc}^{1} \times 1,114$
Dynamic load torque (Mz), maximum	[Nm]	$\mathrm{Lc}^{1} \times 1,114$
Force required to move second carriage	[N]	40
Ordering length (L order)	[mm]	Smax + Lc +315
Total length (L tot]	[mm]	L order + 53
Weight of unit with zero stroke of carriages	[kg]	$\begin{aligned} & 9,50 \\ & 3,00 \end{aligned}$

M100

Belt Drive, Slide Guide

General Specifications

Parameter	M100
Profile size $(w \times h)[\mathrm{mm}]$	108×100
Type of belt	STD8-50
Carriage sealing system	self-adjusting steel cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubricated for life
Included accessories	none

Performance Specifications

Parameter		M100
Stroke length (Smax), maximum	[mm]	12000
Linear speed, maximum	[m/s]	5,0
Acceleration, maximum	[m/s ${ }^{2}$]	40
Repeatability	[$\pm \mathrm{mm}$]	0,2
Input speed, maximum	[rpm]	1700
Operation temperature limits	[${ }^{\text {C }}$]	-20-70
$\begin{aligned} & \text { Dynamic load (Fx), maximum } \\ & <2,5 \mathrm{~m} / \mathrm{s} \\ & >2,5 \mathrm{~m} / \mathrm{s} \end{aligned}$	[N]	$\begin{gathered} 1250 \\ 625 \end{gathered}$
Dynamic load (Fy), maximum	[N]	3005
Dynamic load (Fz), maximum	[N]	3005
Dynamic load torque (Mx), maximum	[Nm]	117
Dynamic load torque (My), maximum	[Nm]	279
Dynamic load torque (Mz), maximum	[Nm]	279
Drive shaft force (Frd), maximum	[N]	1000
Drive shaft torque (Mta), maximum	[Nm]	45
Pulley diameter	[mm]	56,02
Stroke per shaft revolution	[mm]	176
Weight of unit with zero stroke of every 100 mm of stroke of carriage	[kg]	$\begin{gathered} 11,10 \\ 1,16 \\ 2,40 \end{gathered}$

Carriage Idle Torque (M idle) [Nm]

Input speed [rpm]	Single Carriage	Double Carriages
150	3,8	5,8

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Definition of Forces

Toll Free Fax (877) SERV099

Belt Drive, Slide Guide

A1: lubrication holes
A2: ø17/ø10,5 for socket head cap screw M10

A3: 170 (L order <= 1 m), 270 (L order > 1 m) A4: 186 (L order < = 1 m), 436 (L order > 1 m)

Double Carriages		
Parameter		M100
Minimum distance between carriages (LC)	[mm]	350
Dynamic load (Fy), maximum	[N]	4508
Dynamic load (Fz), maximum	[N]	4508
Dynamic load torque (My), maximum	[Nm]	Lc ${ }^{1} \times 2,254$
Dynamic load torque (Mz), maximum	[Nm]	Lc ${ }^{1} \times 2,254$
Force required to move second carriage	[N]	45
Ordering length (L order)	[mm]	Smax + Lc +375
Total length (L tot)	[mm]	Lorder + 56
Weight of unit with zero stroke of carriages	[kg]	$\begin{array}{r} 17,40 \\ 4,80 \end{array}$

[^13]
ELECTROMATE

Linear Units with Belt Drive and Wheel Guide

Overview

SpeedLine WH

Features

- Can be installed in any orientation
- Speed up to $11 \mathrm{~m} / \mathrm{s}$
- Acceleration up to $40 \mathrm{~m} / \mathrm{s}^{2}$
- Stroke up to 11 m

| Parameter | | WH50 | WH80 | WH120 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Profile size (width \times height) | $[\mathrm{mm}]$ | 50×50 | 80×80 | 120×110 |
| Stroke length (Smax), maximum | $[\mathrm{mm}]$ | 3000 | 11000 | 11000 |
| Linear speed, maximum | $[\mathrm{m} / \mathrm{s}]$ | 6,5 | 10,0 | 10,0 |
| Dynamic carriage load (Fz), maximum | $[\mathrm{N}]$ | 730 | 2100 | 9300 |
| Remarks | | external wheel guides
 no cover band | external wheel guides
 no cover band | external wheel guides
 no cover band |
| Page | | 110 | 112 | |

WH-Series Technical Presentation

Belt tensioning

The belt can easily be replaced or re-tensioned from the outside of the unit without the load being removed from the carriage.

Belt drive

The steel reinforced belt is wear resistant, highly efficient and very accurate even at high speeds and loads.

Wheel guides

The H-type arrangement of the guides allows fast moves and high forces and moments.

Central lubrication

The guides are lubricated from a central point that is easy and fast to access.

Linear Units with Belt Drive and Wheel Guide

Overview

Parameter		MLSH60Z	
Profile size (width \times height)	$[\mathrm{mm}]$	160×65	
Stroke length (Smax), maximum	$[\mathrm{mm}]$	5500	
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	10,0	
Dynamic carriage load (Fz), maximum	$[\mathrm{N}]$		3000
Remarks			internal wheel guides
Page		116	

MLSH-Series Technical Presentation

Belt tensioning

The belt can easily be re-tensioned from the outside of the unit without the load being removed from the carriage.

Wheel guides

The robust wheel guides runs inside of the profile providing superior motion dynamics.

Belt drive

The highly dynamic and accurate belt is protected by the cover band ensuring long and trouble free operation.

Cover band

The patented self-adjusting cover band protect the interior of the unit from the penetration of dirt, dust and liquids.

Unique profile

The unique design of the profile guarantees the highest performance and protection of the guides and belt.

WH50

Belt Drive, Wheel Guide

General Specifications

Parameter	WH50
Profile size $(w \times h)[\mathrm{mm}]$	50×50
Type of belt	16 ATL5
Carriage sealing system	none
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubrication og guiding surfaces
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WH50
Stroke length (Smax), maximum	[mm]	3000
Linear speed, maximum	[m/s]	6,5
Acceleration, maximum	[m/s ${ }^{2}$]	40
Repeatability	[$\pm \mathrm{mm}$]	0,05
Input speed, maximum	[rpm]	3250
Operation temperature limits	[${ }^{\text {C }}$]	0-80
Dynamic load (Fx), maximum	[N]	670^{1}
Dynamic load (Fy), maximum	[N]	415
Dynamic load (Fz), maximum	[N]	730
Dynamic load torque (Mx), maximum	[Nm]	16
Dynamic load torque (My), maximum	[Nm]	87
Dynamic load torque (Mz), maximum	[Nm]	50
Drive shaft force (Frd), maximum	[N]	150
Drive shaft torque (Mta), maximum	[Nm]	17
Pulley diameter	[mm]	38,2
Stroke per shaft revolution	[mm]	120
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{aligned} & 3,50 \\ & 0,44 \\ & 0,90 \end{aligned}$

${ }^{1}$ See diagram Force Fx

Carriage Idle Torque, (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	1,7
1500	2,4
3250	3,8

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Force Fx as a Function of the Speed

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

Linear Motion Systems
sales@electromate.com
WH50

Belt Drive, Wheel Guide

A4: socket cap screw ISO4762-M5×12 8.8
A1: depth 10
A2: depth 3
A3: funnel type lubricating nipple DIN3405-M6×1-D1

A5: ENF inductive sensor rail kit (optional - see page 172)

A1: depth 10

Double Carriages

Parameter		WH50
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	260
Dynamic load (Fy), maximum	$[\mathrm{N}]$	830
Dynamic load (Fz), maximum	$[\mathrm{N}]$	1460
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{L} \mathrm{A}^{\prime} \times 0,415$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{L} \mathrm{A}^{\prime} \times 0,73$
Force required to move second carriage	$[\mathrm{N}]$	16
Total length (L tot)	$[\mathrm{mm}]$	Smax $+440+\mathrm{La}$
${ }^{1}$ Value inmm		

[^14]
WH8O

Belt Drive, Wheel Guide

General Specifications

Parameter	WH80
Profile size $(w \times h)[\mathrm{mm}]$	80×80
Type of belt	32ATL10
Carriage sealing system	none
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubrication og guiding surfaces
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WH80
Stroke length (Smax), maximum	[mm]	11000
Linear speed, maximum	[m/s]	10,0
Acceleration, maximum	[m/s ${ }^{2}$]	40
Repeatability	[$\pm \mathrm{mm}$]	0,05
Input speed, maximum	[rpm]	3000
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load (Fx), maximum	[N]	$2700{ }^{1}$
Dynamic load (Fy), maximum	[N]	882
Dynamic load (Fz), maximum	[N]	2100
Dynamic load torque (Mx), maximum	[Nm]	75
Dynamic load torque (My), maximum	[Nm]	230
Dynamic load torque (Mz), maximum	[Nm]	100
Drive shaft force (Frd), maximum	[N]	500
Drive shaft torque (Mta), maximum	[Nm]	100
Pulley diameter	[mm]	63,66
Stroke per shaft revolution	[mm]	200
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{aligned} & 8,63 \\ & 0,93 \\ & 2,75 \end{aligned}$

${ }^{1}$ See diagram Force Fx

Carriage Idle Torque, (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	2,4
1500	3,5
3000	5,0

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information. Units with a profile length over 6300 mm consist of two profiles where the joint between the two profiles must be addequately supported on both sides.

Force Fx as a Function of the Speed

Definition of Forces

WH8O

Belt Drive, Wheel Guide

A1: depth 16
A2: depth 2,5
A3: depth 12

Long Carriage

Parameter		WH80
Carriage length	$[\mathrm{mm}]$	450
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	345
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	150
Weight	$[\mathrm{kg}]$	3,43

Double Carriages

Parameter		WH80
Minimum distance between carriages (La)	$[\mathrm{mm}]$	300
Dynamic load (Fy), maximum	$[\mathrm{N}]$	1764
Dynamic load (Fz), maximum	$[\mathrm{N}]$	4200
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA} \mathrm{A}^{\prime} \times 0,882$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 2,1$
Force required to move second carriage	$[\mathrm{N}]$	20
Total length (L tot)	$[\mathrm{mm}]$	Smax $+550+\mathrm{L} \mathrm{A}$
Value in mm		

A4: funnel type lubricating nipple DIN3405-M6×1-D1
A5: socket cap screw IS04762-M6×20 8.8
A6: ENF inductive sensor rail kit (optional - see page 172)

$$
\text { A1: depth } 12
$$

[^15]
WH120

» Ordering key - see page 205
» Accessories - see page 135
" Additional data - see page 184

Belt Drive, Wheel Guide

General Specifications

Parameter	WH120
Profile size $(w \times h)[\mathrm{mm}]$	120×110
Type of belt	50ATL10
Carriage sealing system	none
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubrication og guiding surfaces
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WH120
Stroke length (Smax), maximum	[mm]	11000
Linear speed, maximum	[m/s]	10,0
Acceleration, maximum	[m/s ${ }^{2}$]	40
Repeatability	[$\pm \mathrm{mm}$]	0,05
Input speed, maximum	[rpm]	2308
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load (Fx), maximum	[N]	$5000{ }^{1}$
Dynamic load (Fy), maximum	[N]	4980
Dynamic load (Fz), maximum	[N]	9300
Dynamic load torque (Mx), maximum	[Nm]	500
Dynamic load torque (My), maximum	[Nm]	930
Dynamic load torque (Mz), maximum	[Nm]	500
Drive shaft force (Frd), maximum	[N]	700
Drive shaft torque (Mta), maximum	[Nm]	200
Pulley diameter	[mm]	82,76
Stroke per shaft revolution	[mm]	260
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	[kg]	$\begin{array}{r} 17,00 \\ 1,64 \\ 5,50 \end{array}$

${ }^{1}$ See diagram Force Fx

Carriage Idle Torque, (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	4,8
1500	7,0
2308	10,0

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information. Units with a profile length over 4900 mm consist of two profiles where the joint between the two profiles must be addequately supported on both sides.

Force Fx as a Function of the Speed

Definition of Forces

Belt Drive, Wheel Guide

Y

A1: depth 20
A2: depth 7
A3: depth 12

Long Carriage

Parameter		WH120
Carriage length	$[\mathrm{mm}]$	520
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	1395
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	750
Weight	$[\mathrm{kg}]$	8,67

Double Carriages

Parameter		WH120
Minimum distance between carriages (La)	$[\mathrm{mm}]$	300
Dynamic load (Fy), maximum	$[\mathrm{N}]$	9960
Dynamic load (Fz), maximum	$[\mathrm{N}]$	18600
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 4,98$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 9,3$
Force required to move second carriage	$[\mathrm{N}]$	30
Total length (L tot)	$[\mathrm{mm}]$	Smax $+605+\mathrm{L} \mathrm{A}$
${ }^{1}$ Value in mm		

A4: funnel type lubricating nipple DIN3405-M6×1-D1
A5: socket cap screw ISO4762-M8×20 8.8
A6: ENF inductive sensor rail kit (optional - see page 172)

A1: depth 12

[^16]
MLSH60Z

Belt Drive, Wheel Guide

General Specifications

Parameter	MLSH60Z
Profile size $(\mathrm{w} \times \mathrm{h})[\mathrm{mm}]$	160×65
Type of belt	32ATL5
Carriage sealing system	plastic cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	no lubrication required
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		MLSH60Z
Stroke length (Smax), maximum	$[\mathrm{mm}]$	5500
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$	6,5
Acceleration, maximum	$\left[\mathrm{m} \mathrm{s}^{2}\right]$	40
Repeatability	$[\mathrm{mm}]$	0,05
Input speed, maximum	3000	
Operation temperature limits	$\left[{ }^{\circ} \mathrm{C}\right]$	$0-80$
Dynamic load (Fx), maximum	$[\mathrm{N}]$	1480^{1}
Dynamic load (Fy), maximum	$[\mathrm{N}]$	3000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	3000
Dynamic load torque (Mx), maximum	$[\mathrm{Nm}]$	165
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	310
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	310
Drive shaft force (Frd), maximum	$[\mathrm{N}]$	200
Drive shaft torque (Mta), maximum	$[\mathrm{Nm}]$	45
Pulley diameter	$[\mathrm{mm}]$	42,97
Stroke per shaft revolution	$[\mathrm{mm}]$	135
Weight of unit with zero stroke of every 100 mm of stroke of each carriage	$[\mathrm{kg}]$	
年		12,60

${ }^{1}$ See diagram Force Fx

Carriage Idle Torque, (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	4,6
1500	9,0
3000	12,0

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

A mounting clamp must be installed at least every 750 mm to be able to operate atmaximum load. Less clamps may be required if less load is being operated, see the additional technical data for more information.

Force Fx as a Function of the Speed

Definition of Forces

ELECTROMATE

Toll Free Fax (877) SERV099

MLSH60Z

Belt Drive, Wheel Guide

A1: depth 10
A2: depth 4

A3: socket cap screw IS04762-M6x20 8.8
A4: ENF inductive sensor rail kit (optional - see page 172)

Long Carriage

Parameter		MLSH60Z
Carriage length	$[\mathrm{mm}]$	450
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	585
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	585
Weight	$[\mathrm{kg}]$	6

Double Carriages

Parameter		MLSH60Z
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	290
Dynamic load (Fy), maximum	$[\mathrm{N}]$	6000
Dynamic load (Fz), maximum	$[\mathrm{N}]$	6000
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{1} \times 3$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	L A $^{1} \times 3$
Force required to move second carriage	$[\mathrm{N}]$	10
Total length (L tot)	$[\mathrm{mm}]$	Smax $+480+$ L A

[^17]

A1: depth 10

Linear Lifting Units

Overview

SpeedLine WHZ

Features

- Can be installed in any orientation
- Belt drive
- External wheel guides
- Speed up to $10 \mathrm{~m} / \mathrm{s}$
- Acceleration up to $40 \mathrm{~m} / \mathrm{s}^{2}$

Parameter		WHZ50	WHZ80	
Profile size (width \times length	$[\mathrm{mm}]$		50×50	80×80
Stroke length (Smax), maximum	$[\mathrm{mm}]$		1500	3000
Linear speed, maximum	$[\mathrm{m} / \mathrm{s}]$		6,5	10,0
Dynamic load (Fx), maximum	$[\mathrm{N}]$		670	1480
Remarks		The load is always attached to the end of the lifting profile	The load is always attached to the end of the lifting profile	
Page			120	120

ELECTROMATE

Linear Lifting Units

Overview

Features

- Telescopic movement
- Ball screw drive
- Internal slide guides
- Load up to 7500 N
- Load torque up to 2000 Nm
- Two end stop limit switches (Z2 only)

Parameter		Z2	Z3
Profile size (width \times height)	[mm]	188×150	188×150
Stroke length (Smax), maximum	[mm]	1500	1500
Linear speed, maximum	[m/s]	1,25	1,25
Dynamic load (Fz), maximum	[N]	7500	7500
Remarks		Can be installed in any direction. The load must be attached at the end of the lifting profile	Can only be installed vertically with motor up. The load must be attached at the end of the lifting profile.
Page		124	126

WHZ50

Belt Drive, Wheel Guide

General Specifications

Parameter	WHZ50
Profile size $(w \times h)[\mathrm{mm}]$	50×50
Type of belt	16 ATL 5
Carriage sealing system	none
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubrication of carriage and guide surfaces
Included accessories	-

Performance Specifications

Parameter		WHZ50
Stroke length (Smax), maximum	[mm]	1500
Linear speed, maximum	[m/s]	6,5
Acceleration, maximum	[m/s ${ }^{2}$]	40
Repeatability	[$\pm \mathrm{mm}$]	0,05
Input speed, maximum	[rpm]	3250
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load (Fx), maximum	[N]	$670{ }^{1}$
Dynamic load (Fy), maximum	[N]	415
Dynamic load (Fz), maximum	[N]	730
Dynamic load torque (Mx), maximum	[Nm]	16
Dynamic load torque (My), maximum	[Nm]	87
Dynamic load torque (Mz), maximum	[Nm]	50
Drive shaft force (Frd), maximum	[N]	150
Drive shaft torque (Mta), maximum	[Nm]	17
Pulley diameter	[mm]	38,2
Stroke per shaft revolution	[mm]	120
Weight of unit with zero stroke of every 100 mm of stroke of each drive station box	[kg]	$\begin{aligned} & 4,50 \\ & 0,42 \\ & 2,90 \end{aligned}$

${ }^{1}$ See diagram Force Fx

Carriage Idle Torque, (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	1,7
1500	2,4
3250	3,8

M idle = the input torque needed to move the carriage with no load on it.

Force Fx as a Function of the Speed

Definition of Forces

Toll Free Fax (877) SERV099

Linear Motion Systems
sales@electromate.com

WHZ50

METRIC \square (

Belt Drive, Wheel Guide

A1: depth 12
A2: depth 3,5
A3: funnel type lubricating nipple DIN3405-M6×1-D1 A4: depth 16

Long Carriage

Parameter		WHZ50
Carriage length	$[\mathrm{mm}]$	400
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	130
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	75
Weight	$[\mathrm{kg}]$	3,3

Double Carriages		
Parameter		
Minimum distance between carriages (LA)	$[\mathrm{mm}]$	260
Dynamic load (Fy), maximum	$[\mathrm{N}]$	830
Dynamic load (Fz), maximum	$[\mathrm{N}]$	1460
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 0,415$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 0,73$
Force required to move second carriage	$[\mathrm{N}]$	
Total length (Ltot)	$[\mathrm{mm}]$	Smax $+350+\mathrm{La}$

A5: depth 4
A6: depth 8
A7: ENF inductive sensor rail kit (optional - see page 172)

A1: depth 12
A3: funnel type lubricating nipple DIN3405-M6×1-D1 A5: depth 4

[^18]
WHZ8O

Belt Drive, Wheel Guide

General Specifications

Parameter	WHZ80
Profile size $(w \times h)[\mathrm{mm}]$	80×80
Type of belt	32 ATL 5
Carriage sealing system	none
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubrication of carriage and guide surfaces
Included accessories	

Performance Specifications

Parameter		WHZ80
Stroke length (Smax), maximum	[mm]	3000
Linear speed, maximum	[m/s]	10,0
Acceleration, maximum	[m/s ${ }^{2}$]	40
Repeatability	[$\pm \mathrm{mm}$]	0,05
Input speed, maximum	[rpm]	3000
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load (Fx), maximum	[N]	$1480{ }^{1}$
Dynamic load (Fy), maximum	[N]	882
Dynamic load (Fz), maximum	[N]	2100
Dynamic load torque (Mx), maximum	[Nm]	75
Dynamic load torque (My), maximum	[Nm]	230
Dynamic load torque (Mz), maximum	[Nm]	100
Drive shaft force (Frd), maximum	[N]	500
Drive shaft torque (Mta), maximum	[Nm]	50
Pulley diameter	[mm]	63,66
Stroke per shaft revolution	[mm]	200
Weight of unit with zero stroke of every 100 mm of stroke of each drive station box	[kg]	$\begin{array}{r} 11,20 \\ 0,91 \\ 6,65 \end{array}$

${ }^{1}$ See diagram Force Fx

Carriage Idle Torque, (M idle) [Nm]

Input speed [rpm]	Idle torque [Nm]
150	2,4
1500	3,5
3000	5,0

M idle = the input torque needed to move the carriage with no load on it.

Force Fx as a Function of the Speed

Definition of Forces

WHZ8O

Dimensions	Projection
METRIC	$\square \odot$

Belt Drive, Wheel Guide

A1: depth 20
A2: depth 3,5
A3: funnel type lubricating nipple DIN3405-M6×1-D1

Long Carriage

Parameter		WHZ80
Carriage length	$[\mathrm{mm}]$	450
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	345
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	150
Weight	$[\mathrm{kg}]$	7,4

Double Carriages ${ }^{2}$

Parameter		WHZ80
Minimum distance between carriages (La)	$[\mathrm{mm}]$	300
Dynamic load (Fy), maximum	$[\mathrm{N}]$	1764
Dynamic load (Fz), maximum	$[\mathrm{N}]$	4200
Dynamic load torque (My), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 0,882$
Dynamic load torque (Mz), maximum	$[\mathrm{Nm}]$	$\mathrm{LA}^{\prime} \times 2,1$
Force required to move second carriage	$[\mathrm{N}]$	20
Total length (L tot)	$[\mathrm{mm}]$	Smax $+410+\mathrm{L} \mathrm{A}$

[^19]A4: depth 4
A5: depth 15
A6: ENF inductive sensor rail kit (optional - see page 172)

A1: depth 20
A2: depth 3,5

A3: funnel type lubricating nipple DIN3405-M6×1-D1 A4: depth 4

Z2

Ball Screw Drive, Slide Guide

" Ordering key - see page 208
" Accessories - see page 135
" Additional data - see page 185

General Specifications

Parameter	Z2
Profile size $(w \times h)[\mathrm{mm}]$	188×150
Type of screw	ball screw with single nut
Sealing system	none
Screw supports	none
Lubrication	lubrication of screw and slide surfaces
Included accessories	none

Performance Specifications

Parameter		Z2
Stroke length (Smax), maximum	[mm]	1500
Linear speed, maximum	[m/s]	1,25
Acceleration, maximum	[m/s ${ }^{2}$]	8
Repeatability	[$\pm \mathrm{mm}$]	0,1
Input speed, maximum screw diameter/lead [mm] 25/10, 25/25 screw diameter/lead [mm] 32/20	[rpm]	$\begin{aligned} & 3000 \\ & 2500 \end{aligned}$
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	-20-70
Dynamic load (Fz), maximum screw diameter/lead [mm] 25/10, 25/25 screw diameter/lead [mm] 32/20	[N]	$\begin{aligned} & 5000 \\ & 7500 \end{aligned}$
Dynamic load torque (Mx), maximum	[Nm]	700
Dynamic load torque (My), maximum	[Nm]	700
Dynamic load torque (Mz), maximum	[Nm]	330
Drive shaft force (Frd), maximum screw diameter/lead [mm] 25/10, 25/25 screw diameter/lead [mm] 32/20	[N]	$\begin{aligned} & 1000 \\ & 1200 \end{aligned}$
Drive shaft torque (Mta), maximum screw diameter/lead [mm] 25/10, 25/25 screw diameter/lead [mm] 32/20	[Nm]	$\begin{aligned} & 45 \\ & 93 \end{aligned}$
Screw versions, diameter (do) / lead (p)	[mm]	25/10, 25/25,32/20
Weight of unit with zero stroke, ball screw $ø 25 \mathrm{~mm}$ of unit with zero stroke, ball screw $ø 32 \mathrm{~mm}$ of every 100 mm of stroke, ball screw $\varnothing 25 \mathrm{~mm}$ of every 100 mm of stroke, ball screw $\varnothing 32 \mathrm{~mm}$	[kg]	$\begin{array}{r} 19,00 \\ 23,64 \\ 2,50 \\ 2,80 \end{array}$

Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw diameter/lead [mm]		
	$\mathrm{~d} 0=25 / \mathrm{p}=10$	$\mathrm{~d} 0=25 / \mathrm{p}=25 \mathrm{~d} 0=32 / \mathrm{p}=20$	
	1,9	1,5	

M idle $=$ the input torque needed to move the lifting profiles without any load.

Critical Speed

1: screw diameter 25 mm
2: screw diameter 32 mm

Definition of Forces and Stroke

** Smax = maximum stroke between the mechanical ends of the unit. The practical stroke is normally 100 mm shorter to avoid running into the ends of the unit.

Ball Screw Drive, Slide Guide

MGZ2K25 screw $ø 25 \mathrm{~mm}$

A1: depth 9, Heli coil
A2: T-slot

A2: T-slot

Type of unit	Minimum retracted length (L min) [mm]	Maximum extended length (L max)
Standard	L min $=$ Smax +380	L max $=\mathrm{L}$ min + Smax
Elongated*	L min $=$ Smax $+380+L x$	L max $=\mathrm{L}$ min +Smax

Ball Screw Drive, Slide Guide

» Ordering key - see page 208
" Accessories - see page 135
" Additional data - see page 185

General Specifications

Parameter	Z3		
Profile size $(w \times h)[\mathrm{mm}]$	188×150		
Type of screw	ball screw with single nut		
Sealing system	none	$⿻$	Screw supports
:---			
Lubrication			
Included accessories			

Performance Specifications

Parameter		Z3
Stroke length (Smax), maximum	[mm]	1500
Linear speed, maximum	[m/s]	1,25
Acceleration, maximum	[m/s ${ }^{2}$]	8
Repeatability	[$\pm \mathrm{mm}$]	0,1
Input speed, maximum screw diameter/lead [mm] 25/10, 25/25 screw diameter/lead [mm] 32/20	[rpm]	$\begin{aligned} & 3000 \\ & 2500 \end{aligned}$
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	-20-70
Dynamic load (Fz), maximum screw diameter/lead [mm] 25/10, 25/25 screw diameter/lead [mm] 32/20	[N]	$\begin{aligned} & 5000 \\ & 7500 \end{aligned}$
Dynamic load torque (Mx), maximum	[Nm]	2000
Dynamic load torque (My), maximum	[Nm]	2000
Dynamic load torque (Mz), maximum	[Nm]	330
Drive shaft force (Frd), maximum screw diameter/lead [mm] 25/10, 25/25 screw diameter/lead [mm] 32/20	[N]	$\begin{aligned} & 1000 \\ & 1200 \end{aligned}$
Drive shaft torque (Mta), maximum screw diameter/lead [mm] 25/10, 25/25 screw diameter/lead [mm] 32/20	[Nm]	$\begin{aligned} & 45 \\ & 93 \end{aligned}$
Screw versions, diameter (do) / lead (p)	[mm]	25/10, 25/25, 32/20
Weight of unit with zero stroke, ball screw $ø 25 \mathrm{~mm}$ of unit with zero stroke, ball screw $ø 32 \mathrm{~mm}$ of every 100 mm of stroke, ball screw $\varnothing 25 \mathrm{~mm}$ of every 100 mm of stroke, ball screw $\varnothing 32 \mathrm{~mm}$	[kg]	$\begin{array}{r} 21,14 \\ 22,65 \\ 4,20 \\ 4,50 \end{array}$

Idle Torque (M idle) [Nm]

| Input speed [rpm] |
| :--- | $\mathrm{d} 0=25 / p=10 \mathrm{~d} 0=25 / p=25 \mathrm{~d} 0=32 / p=20$

1: screw diameter 25 mm
2: screw diameter 32 mm

Definition of Forces and Stroke

** Smax = maximum stroke between the mechanical ends of the unit. The practical stroke is normally 100 mm shorter to avoid running into the ends of the unit.

Z3

Ball Screw Drive, Slide Guide

Linear Rod Units

Overview

VarioLine WZ

Features

- Can be installed in any orientation
- Ball screw drive
- Ball guides
- Compact

| Parameter | | WZ60 | WZ80 |
| :--- | :---: | :---: | :---: | :---: |
| Profile size (width \times height $)$ | $[\mathrm{mm}]$ | 60×60 | 80×80 |
| Stroke length (Smax), maximum | $[\mathrm{mm}]$ | 400 | 500 |
| Linear speed, maximum | $[\mathrm{m} / \mathrm{s}]$ | 1,5 | 1,5 |
| Dynamic carriage load (Fx), maximum | $[\mathrm{N}]$ | 2800 | 3500 |
| Remarks | | - | - |
| Page | | 130 | 132 |

Linear Rod Units

Overview

WZ-Series Technical Presentation

WZ60

Ball Screw Drive, Ball Guide

" Ordering key - see page 208
" Accessories - see page 135
" Additional data - see page 186

General Specifications

Parameter	WZ60
Profile size $(w \times h)[\mathrm{mm}]$	60×60
Type of screw	single nut ball screw
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WZ60
Stroke length (Smax), maximum	[mm]	400
Linear speed, maximum	[m/s]	1,5
Acceleration, maximum	[m/s ${ }^{2}$]	20
Repeatability	[$\pm \mathrm{mm}$]	0,02
Input speed, maximum	[rpm]	3000
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load ($F x$), maximum	[N]	2800
Dynamic load (Fy), maximum	[N]	$2000{ }^{1}$
Dynamic load (Fz), maximum	[N]	$2000{ }^{1}$
Dynamic load torque (Mx), maximum	[Nm]	$50{ }^{1}$
Drive shaft force (Frd), maximum	[N]	500
Drive shaft torque (Mta), maximum	[Nm]	30
Ball screw diameter (do)	[mm]	20
Ball screw lead (p)	[mm]	5,20,50
Weight of unit with zero stroke of every 100 mm of stroke of the rod with zero stroke of every 100 mm of rod	[kg]	$\begin{gathered} 4,5 \\ 0,77 \\ 1,8 \\ 0,26 \end{gathered}$

[^20]
Rod Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]		
	$p=5$	$p=20$	$p=50$
1500	0,7	1,0	1,4
3000	1,1	1,6	2,0

M idle = the input torque needed to move the rod with no load on it.

Definition of Forces

Toll Free Fax (877) SERV099

Linear Motion Systems
sales@electromate.com

WZ60

Dimensions Projection
METRIC $\square \oplus$

Ball Screw Drive, Ball Guide

A1: depth 13
A2: locking plug for lubricating nipple
A3: socket cap screw ISO4762-M6×20 8.8
A4: tapered lubricating nipple to DIN71412 AM6 as standard feature

Maximum Rod Side Forces (Fy, Fz)

Torsion (φ) of Rod due to Mx

Deflection (f) of Rod due to Fy and Fz

1: Load $=2000 \mathrm{~N}$
2: Load $=1500 \mathrm{~N}$
3: Load $=1000 \mathrm{~N}$
4: Load $=500 \mathrm{~N}$
5: Load = 250 N
6 : Load $=125 \mathrm{~N}$

WZ80

Ball Screw Drive, Ball Guide

General Specifications

Parameter	WZ80
Profile size $(w \times h)[\mathrm{mm}]$	80×80
Type of screw	single nut ball screw
Lubrication	central lubrication of all parts that require lubrication
Included accessories	$4 \times$ mounting clamps

Performance Specifications

Parameter		WZ80
Stroke length (Smax), maximum	[mm]	500
Linear speed, maximum	[m/s]	1,5
Acceleration, maximum	[m/s ${ }^{2}$]	20
Repeatability	[$\pm \mathrm{mm}$]	0,02
Input speed, maximum	[rpm]	3000
Operation temperature limits	[$\left.{ }^{\circ} \mathrm{C}\right]$	0-80
Dynamic load (Fx), maximum	[N]	3500
Dynamic load (Fy), maximum	[N]	$3000{ }^{1}$
Dynamic load (Fz), maximum	[N]	$3000{ }^{1}$
Dynamic load torque (Mx), maximum	[Nm]	$150{ }^{1}$
Drive shaft force (Frd), maximum	[N]	700
Drive shaft torque (Mta), maximum	[Nm]	55
Ball screw diameter (do)	[mm]	25
Ball screw lead (p)	[mm]	5, 10, 20, 50
Weight of unit with zero stroke of every 100 mm of stroke of the rod with zero stroke of every 100 mm of rod	[kg]	$\begin{gathered} 7,5 \\ 1,35 \\ 3,0 \\ 0,5 \end{gathered}$

[^21]
Rod Idle Torque (M idle) [Nm]

Input speed [rpm]	Screw lead [mm]			
	$p=5$	$p=10$	$p=20$	$p=50$
1500	0,6	1,1	1,3	1,8
3000	1,1	1,5	1,6	2,2

M idle = the input torque needed to move the rod with no load on it.

Definition of Forces

Ball Screw Drive, Ball Guide

A1: depth 13
A2: locking plug for lubricating nipple
A3: socket cap screw ISO4762-M6×20 8.8
A4: tapered lubricating nipple to DIN71412 AM6 as standard feature

Maximum Rod Side Forces (Fy, Fz)

Torsion (φ) of Rod due to Mx

Deflection (f) of Rod due to Fy and Fz

1: Load $=3000 \mathrm{~N}$
2: Load $=2500 \mathrm{~N}$
3: Load $=2000 \mathrm{~N}$
4: Load $=1500 \mathrm{~N}$
5: Load $=1000 \mathrm{~N}$
6: Load $=500 \mathrm{~N}$
7: Load $=250 \mathrm{~N}$
8: Load $=125 \mathrm{~N}$

ELE TROMATE Toi ee Fa -377 SERVO99 v.ele omate.com s@el om te.com

Accessories

Accessory Index

- Mounting clamps 136
- Mounting clamps for multi axis systems 138
- Mounting plates for multi axis systems 139
- Adapter plates 139
- T-slot bolts and nuts 140
- Felt pad wipers type FA 141
- Shaft protection cover. 141
- Protective bellows 142
- Protective shrouds. 143
- Environment protection type S1 and S2 144
- RediMount ${ }^{\text {TMTM }}$ Motor Mount System 145
- Bell house flanges for IEC motors 146
- Bell house flanges type MGK 147
- Worm gears type BS40 and TBS40 148
- Belt gears type RT and BGM 152
- Planetary gears type Micron DT and DTR. 158
- Intermediate shafts type VWZ and DSP 160
- Brakes. 164
Mounting Kits
Cover and Protection Kits 141
Motors, Gears and Transmission Kits page 145
Electrical Feedback Devices. page 165
- Limit switch brackets and limit switches 165
- Inductive and magnetic sensors and sensor brackets. 166
- Encoders 169
- Limit switch kits type ES 170
- Sensor rails and kits type ENT, ENF and ENK. 172
- Encoder kits type ADG. 174
Non Driven Linear Motion Systemspage 176
- WH series non driven units. 176
- WM series non driven units 178
- M series non driven units 181

Accessories

Mounting Kits

Mounting Clamps (single clamp)

Unit type	I	II	III	A	B	C	D	øE	F	$\boldsymbol{\sigma}$	H	Screws	Ms [Nm]
WH40	-	8908850001	-	54	16	9,5	40	10	5,7	5,5	7	ISO4762-8.8	5,4
WH50	-	8908850001	-	54	16	9,5	40	10	5,7	5,5	7	IS04762-8.8	5,4
WH80 / WB60	-	89019002	-	68	17,5	17	50	11	6,5	6,6	7	IS04762-8.8	9
WH120	-	89019213	-	80	25	18	50	15	8,5	9	10	IS04762-8.8	20
WM40 / WB40	-	890885001	-	54	16	9,5	40	10	5,7	5,5	7	IS04762-8.8	5,4
WM60 / WV60 / WZ60	-	89019002	-	68	17,5	17	50	11	6,5	6,6	7	IS04762-8.8	9
WM80 / WV80 / WZ80	-	89019002	-	68	17,5	17	50	11	6,5	6,6	7	IS04762-8.8	9
WM60Z / WM80Z	-	89019002	-	68	17,5	17	50	11	6,5	6,6	7	IS04762-8.8	9
WM120 / WV120	-	89019213	-	80	25	18	50	15	8,5	9	10	IS04762-8.8	20
MLS60	-	89019002	89019226	68/120	17,5	17	50	11	6,5	6,6	7	IS04762-8.8	9
MLS80	-	89019213	89019231	80/200	25	18	50	15	8,5	9	10	IS04762-8.8	20
M50 ${ }^{1}$	D312 248	-	-	25	30	20	-	-	-	6,5	14	IS04762-8.8	9,4
M55 ${ }^{1}$	D313 403	D313 402	-	25/56	25,5	10,7	41	9,5	5,3	5,5	10,2	IS04762-8.8	5,5
M75 ${ }^{1}$	D312 747	D312 748	-	30/75	28,5	15	60	14	8,5	8,5	11	IS04762-8.8	23
M100 ${ }^{1}$	D312 339	D312 334	-	45/92	46,5	22	60	17	10,5	10,5	20	IS04762-8.8	45

${ }^{1}$ no screws included in the shipment of these clamps

I

Accessories

Mounting Kits

Mounting Clamps with Plate ${ }^{1}$

Unit type	p/n	A	B	C	D	E	oF	oG	H
M50	D312 117	7	20	105	35	30	6,5	11	-
M55	D313 474	8,5	15	100	44	70	8,5	14	44
M75	D312 718	8,5	15	134	44	80	8,5	14	44
M100	D312 317	8,5	20	190	44	100	8,5	14	44

${ }^{1}$ two mounting clamps of version II (see page 136) and screws to connect these to the plate are included in shipment

ELECTROMATE

Accessories

Mounting Kits

Mounting Clamps for Multi Axis Systems ${ }^{1}$

Unit type X-axis	Unit type Y-axis	I	11	A	B	C	D	øE	F	øG	H
WM40 / WH40	WM40 / WH40	on request	-	-	-	-	-	-	-	-	-
WM60	WM60	89019194	-	58	17,5	17	40	11	6,5	6,6	7
M55	M55	D313 424	-	56	25,5	10,7	41	9,5	5,3	5,5	10,2
M55	M75	-	D313 470	5,5	15	134	76	80	5,5	9,5	41
M75	M55	-	D313 060	-	15	134	76	80	M $5 \times 7,5$	-	41
M75	M75	D312 719	-	75	28,5	15	60	14	8,5	8,5	11
M75	M100	-	D313 062	8,5	20	190	106	100	8,5	14	60
M100	M75	-	D313 292	-	20	190	106,5	100	M8 $\times 12$	-	60
M100	M100	D312 304	-	92	46,5	22	60	17	10,5	10,5	20

${ }^{1}$ all necessary screws are included in the shipment

I

II

Accessories

Mounting Kits

Mounting Plates for Multi Axis Systems

Unit type X-axis	Unit type Y-axis	p/n	A	B	C	D	E	F	G	H	J	K	L
MS33	MS33	MSXYP33-33	30	30	6	9	6	60	120	30	100	M5 x 0,8-6H	12,7
MS33	MS25	MSXYP33-25	30	30	5,5	9	6	60	60	42	42	M $3 \times 0,5-6 \mathrm{H}$	12,7
2HB10	MS25	2HXYP10-MS25	70	70	5,5	9	6	100	100	42	42	M $3 \times 0,5-6 \mathrm{H}$	12,7
2HB10	MS33	2HXYP10-MS33	70	70	6	9	6	100	120	30	100	M5 x 0,8-6H	12,7
2HB10	2HB10	2HXYP10-10	70	70	5,5	9	6	100	100	35	75	M5 x 0,8-6H	12,7
2HB20	2HB10	2HXYP20-10	145	145	10,5	16,5	11	200	200	35	75	M5 x 0,8-6H	22
2HB20	2HB20	2HXYP20-10	145	145	10,5	16,5	11	200	200	85	120	M8 $\times 1,25-6 \mathrm{H}$	22

Combinations for other units are available. Plates to connect X and Z axes are also available for the Microstage units size MS25 and MS33. Contact customer support for details.

Adapter Plates

Unit type	I	II	A	B	C	D	E	of	G
M55	D313 422	D313 423	40	60	20	38	25,5	6,5	37
M75	D312 746	-	40	-	26	-	45	6,5	51
M75	-	D312 745	-	60	-	39	45	7,5	51
M100	D312 338	-	40	-	26	-	69	6,5	62
M100	-	D312 337	-	60	-	39	69	7,5	62

Adapter plates are fitted in the grooves along the profile and can be used to attach sensors, switches, cabl ducts etc. to the unit.

FTHOMSON
Linear Motion. Optimized."

Accessories

Mounting Kits

T-slot Bolts

Unit type	p/n	oD	H
M50	D312 221	M5	14
Z2	D800 089	M10	28
Z3	D800 089	M10	28

T-slot Nuts

Unit type	p/n	A	B	C	D	$\boldsymbol{\sigma}$	F
ZB	D900 151	18	11	1,5	6,3	M6	25
ZB	D900 150	18	11	1,5	6,3	M8	25
MLS60	9203030037	16	8	4	6	M6	16
MLS80	9203030039	19,5	10	5,5	10,5	M8	20
WH120	91104419	15	10	6	12	M8	15
WM120	91104419	15	10	6	12	M8	15
2RB12, 2HB10, 2HB20	TNUT-01-M3	7	4	1,75	3	M3	9
2RB16, 2HB10	TNUT-02-M4	9,5	5,5	2,25	4	M4	12
2RB12	TNUT-03-M4	12	7	2,5	5	M4	15
2RB16, 2HB20	TNUT-04-M4	16,5	7,9	4,8	6	M4	16
2RB16, 2HB20	TNUT-04-M5	16,5	7,9	4,8	6	M5	16
2RB16, 2HB20	TNUT-04-M6	16,5	7,9	4,8	6	M6	16

Toll Free Fax (877) SERVO99

Accessories

Cover and Protection Kits

FA Felt Pad Wiper

Unit type	Number of carriages on the unit	p / n	X
WH50	1	8908850064	6
WH50	2	2×8908850064	6
WH80	1	8908900069	7
WH80	2	2×8908900069	7
WH120	1	8908950058	8
WH120	2	2×8908950058	8
WHZ50	1	8908850064	6
WHZ50	2	2×8908850064	6
WHZ80	1	8908900069	7
WHZ80	2	2×8908900069	7

The felt pad wipers remove dust and dirt from the guides and are located on the carriage(s). They may increase the driving torque slightly but do not reduce the stroke of the unit. The felt pad wipers come mounted from factory.

Shaft Protection Cover

Unit type	\mathbf{p} / \mathbf{n}	\mathbf{A}	B
M50	D312 201	126	35
M55	D312 201	151	35
M75	D700 178	198	45
M100	D700 178	202	45

The shaft protection cover is used to cover shafts which are not being used. The covers are fitted by the customer.

Accessories

Cover and Protection Kits

Protective Bellows type 2D

Unit type	p/n	H	H1	B
2DB08	BEL-2DB-08	48	34	130
$2 D B 12$	BEL-2D-12	61	36,5	152,5
2 DB12	BEL-2D-16	73	43	190,5

Bellows protect the unit from dirt and dust. Note that the bellows option reduces the available stroke of the unit by 28%. Bellows can be ordered and mounted at the factory - see ordering key. Bellows can also be ordered separately and fitted by the customer. In that case, order two pieces of bellows where the length of each bellows piece $=$ stroke length of the unit $\times 0.86$.

Protective Bellows type 2H

Unit type	p/n	B	B2	H	H1	H2	H4
2HB10	BEL-2H-10	103	81	26	11	10	0
$2 H B 20$	BEL-2H-20	199	167	48	30	15	5

Bellows protect the unit from dirt and dust. Note that the bellows option reduces the available stroke of the unit by 28%. Bellows can be ordered and mounted at the factory - see ordering key. Bellows can also be ordered separately and fitted by the customer. In that case, order two pieces of bellows where the length of each bellows piece $=$ stroke length of the unit $\times 0.86$.

Protective Bellows type 2R

Unit type	p/n	B	B2	H	H1	H2	H3	H4
$2 R B 12$	BEL-2R-12	128	75	48	37	29	15	12
$2 R B 16$	BEL-2R-16	158	95	52	43	30	15	10

Bellows protect the unit from dirt and dust. Note that the bellows option reduces the available stroke of the unit by 28%. Bellows can be ordered and mounted at the factory - see ordering key. Bellows can also be ordered separately and fitted by the customer. In that case, order two pieces of bellows where the length of each bellows piece $=$ stroke length of the unit $\times 0.86$.

ELECTROMATE

Accessories

Cover and Protection Kits

Protective Shrouds

Unit type	
$2 H B 10$	see ordering key of the unit for order or www.linearmotioneering.com
2 HB20	see ordering key of the unit for order or www.linearmotioneering.com

The protective shrouds are made of metal and protect the drive mechanism of the unit from dust and dirt but leave the guides unprotected. Shrouds do not reduce the stroke of the unit but they will add 4 mm to the width of the unit. Shrouds are ordered mounted from factory and are stated in the ordering key of the unit.

Accessories

Cover and Protection Kits

Environment Protection Option Type S1 and S2, compatability table

Unit type	Drive type	Guide type	S1	S2	Ordering
M55	ball screw	slide	-		see ordering key of the unit for order
M55	belt drive	slide	-	-	see ordering key of the unit for order
		ball	-		see ordering key of the unit for order
M75	ball screw	slide	-		see ordering key of the unit for order
M75	belt drive	slide	-	-	see ordering key of the unit for order
		ball	-		see ordering key of the unit for order
M100	ball screw	slide	-		see ordering key of the unit for order
M100	belt drive	slide	-	-	see ordering key of the unit for order
		ball	-		see ordering key of the unit for order
WM60 / WM80 / WM120	ball screw	ball	-		see ordering key of the unit for order
WV60 / WV80 / WV120	ball screw	no guide	-		see ordering key of the unit for order
WH50 / WH80 / WH120	belt drive	wheel	-	-	see ordering key of the unit for order
WHZ50 / WHZ80	belt drive	wheel	-		see ordering key of the unit for order

The S1 and S2 environment protection options can be ordered for some units. All performance data and the life expectancy are the same as for standard units except for WH and WHZ units (contact customer service for more information). S1 can be ordered for both ball screw and belt driven units with ball, slide or wheel guides while S2 only is possible for belt driven units with slide or wheel guides. Never use chemical agents and/or cleaning detergents before contacting your local Thomson customer service for advise.

S1-Wash down protection
Typical places where S1 is used are in slaughter houses, dairy plants, food plants or in any other light wash down application.

S2 - Enhanced wash down protection
Typical places where S 2 is used are in moderately wet areas such as in paper mills, galvanising equipment, food industries or in any other harsh environment application where enhanced wash down capabilities are required.

Environment Protection Options Type S1 and S2, technical specification

Item	S1	S2
External screws, bolts and nuts	stainless material class A2 or better	stainless material class A4 or better
Internal screws, bolts and nuts	standard material	stainless material class A2 or better
Drive shaft, ball screw driven units	standard material	-
Drive shaft, belt driven units	stainless material SS2333 or better	stainless material SS2343 or better
Tension wheel shaft	standard material	stainless material SS2333 or better
Bearings type	standard bearings	2RS
Bearing sealings, belt driven units	radial sealings	radial sealings
Surface treatment of machined extruded aluminum parts	none	anodising
Surface treatment of machined casted aluminum parts	none	anodising
Cam rollers and idler shafting (WH and WHZ units)	standard material	stainless material
Belt retainer (WH units)	none	stainless material

ELECTROMATE

Toll Free Fax (877) SERVO99

Accessories

Motors, Gears and Transmission Kits

RediMount ${ }^{T M}$ Motor Mount System, NEMA compatability table

NEMA size	NEMA 17	NEMA 23	NEMA 34	NEMA 42
Motor code*	505	001	002	003
MS25	x	x		
MS33	x	x		
MS46		x	x	
2HB10		x	x	
2HB20			x	x
$2 \mathrm{RB12}$		x	x	
2RB16		x	x	
2DB08	$x($ code 523)	x		
2 DB12		x	x	
2DB16		x	x	

* See ordering keys for details.

Linear motion system motor flange

Shortened ball screw end block

Coupling
Intermediate housing

The standard NEMA motor mount sizes are listed above for reference. The Thomson RediMount ${ }^{\text {TM }}$ System allows the linear units to be mounted to a wide variety of motor manufacturers and sizes. Many of these combinations can be found at www.linearmotioneering.com. Contact customer support for other motor sizes and their corresponding motor code.

Accessories

Motors, Gears and Transmission Kits

Bell House Flanges for IEC Motors

Unit type	IEC63 B14	A	IEC71 B14	A	IEC80 B14	A	IEC90 B14	A	IEC100/112 B14	A
M50	D390 820	64	D390 821	71	-	-	-	-	-	-
M55	D390 820	64	D390 821	71	-	-	-	-	-	
M75	-	-	D390 823	83	D390912	101	D390 916	101	-	
M100 (MG10K)	-	-	D390 823	83	D390 913	101	D390 917	101	-	-
M100 (MG10B)	-	-	D390823	83	D390912	101	D390 916	101	-	

The bell house flange includes a matching coupling. Note! Keep in mind that heavy motors will need extra support in order not to break the flange or gear due to the load torque created.

Toll Free Fax (877) SERV099

Accessories

Motors, Gears and Transmission Kits

MGK Bell House Flanges for AKM Servo Motors

Unit type	AKM3 - D-AN	A	AKM4 - D-AN	A	AKM5 • D-AN	A	AKM6 - D-AN	A	AKM7 • D-AN	A
WM40	8910921264	71	-	-	-	-	-	-	-	-
WB40	8910921263	63	-	-	-	-	-	-	-	-
WB60	8910921265	75	-	-	-	-	-	-	-	-
WM60 / WV60 / WZ60	8910921109	79	8910921262	89	8910921261	103	-	-	-	-
WM80 / WV80 / WZ80	D321 759	80	D321 404	91	8910921259	101	8910921258	117	-	-
WM120 / WV120	-	-	-	-	8910920143	113	8910921257	121	D321 281	143
MLSM60	-	-	8910920909	88	8910921260	98	-	-	-	-
MLSM80	-	-	-	-	-	-	8910921256	111	8910921254	133
M55 (MG06K)	D390 930	73	D389 939	92	-	-	-	-	-	-
M75 (MG07K)	D390 966	83	D390 926	93	D390 909	107	-	-	-	-
M75 (MG07B)	D390 966	83	D390 926	93	D390 909	107	-	-	-	-
M100 (MG10K)	D390 966	83	D390 927	93	D390 910	107	-	-	-	-
M100 (MG10B)	D390 966	83	D390 926	93	D390 909	107	-	-	-	-

The bell house flange includes a matching coupling. Flanges for other units or motor sizes available on request, contact customer service. Note! Keep in mind that heavy motors will need extra support in order not to break the flange or gear due to the load torque created.

Accessories

Motors, Gears and Transmission Kits

BS40 Worm Gears, dimensions

Gear	A	B	C	D	E	F
BS40	54	40	46	10	100	92

The worm gear includes the gear, the bell house and a matching coupling.

BS40 Worm Gears, compatability table

Unit	BS40	IEC71B14	IEC80B14	IEC90B14	A	L
Z2 (MGZ2K32)	•	•			17	58
Z2 (MGZ2K32)	•					17

To be able to install the gear to the unit an adaptor flange must be used between the gear and the unit. The adaptor flange is ordered separately.

Accessories

Motors, Gears and Transmission Kits

BS40 Worm Gears, ordering key

	1	2	3
Example	BS40	-10	-71

Adaptor flanges for BS40 Worm Gears, part numbers

| Unit | p/n |
| :--- | :--- | :---: |
| Z2 (MGZ2K32) | D606 250 |

Accessories

Motors, Gears and Transmission Kits

TBS40 Worm Gears, dimensions

Gear	A	B	C	D	E	F	oG	H	øl	J	K
TBS40	54	40	46	10	100	125	$14 j 6$	45	65	M8 $(4 \times)$	25

The worm gear is installed directly to the unit and requires no intermediate coupling between the two.

TBS40 Worm Gears, compatability table

Unit	TBS40	IEC71B14	IEC80B14	A	L
Z2 (MGZ2K25)	-	-		32	58
Z2 (MGZ2K25)	-		-	32	68
Z3 (MGZ3K25)	-	-		32	58
Z3 (MGZ3K25)	-		-	32	68
M75	-	-		32	58
M75	-		-	32	68
M100	-	-		32	58
M100	-		-	32	68

To be able to install the gear to the motor a bell house flange must be used between the gear and the motor. The bell house flange, which includes a matching coupling, is ordered separately. A shaft cover can be ordered to cover the second primary shaft on the gear in case it is not being used.

Accessories

Motors, Gears and Transmission Kits

TBS40 Worm Gears, ordering key

Bell house flanges for TBS40 Worm Gears, part numbers

| Motor size | \mathbf{p} / \mathbf{n} |
| :--- | :---: | :---: |
| IEC71B14 | D701 011 |
| IEC80B14 | D701015 |

Shaft Cover for TBS40 Worm Gears, part numbers

| Gear type | \mathbf{p} / \mathbf{n} |
| :--- | :--- | :---: |
| TBS40 | D701 020 |

Accessories

Motors, Gears and Transmission Kits

RT Belt Gears, dimensions

Gear	A	B	C	D
RT40	110	30	176	68
RT60	175	74	345	170
RT80	175	74	345	170
RT40		RT60/80		

RT Belt Gears, data

Gear	i	nmax [rpm]	Mmax [Nm]	M idle [Nm]	η	$\mathrm{J}\left[\mathrm{kgm}^{2}\right]$	Weight [kg]
RT40	1:1	3000	1,75	0,3	0,80	0,000025	0,62
RT60	1:1	3000	15	0,7	0,85	0,000438	5,6
RT60	2:1	3000	15	0,7	0,85	0,001011	7,1
RT80	1:1	3000	30	0,7	0,85	0,000465	5,5
RT80	2:1	3000	30	0,7	0,85	0,001038	7

i	= gear ratio	M idle	= idle torque
nmax	= max. input speed	η	= efficiency factor
Mmax	= max. input torque	J	= inertia

Accessories

Motors, Gears and Transmission Kits

RT Belt Gears, compatability table

Gear	WH40 / WM40	WM60 / WV60 / WZ60 / MLSM60D	WH80 / WM80 / WV80 / WM120 / WV120 / MLSM60D / MLSM80D
RT40	\bullet		
RT60			
RT80			

RT Belt Gears, ordering key

1	3	4	5
Example RT80	-2 - - -	-P-N	-05
1. Type and size of belt gear RT40 = RT belt gear size 40 RT60 $=$ RT belt gear size 60 RT80 $=$ RT belt gear size 80 2. Gear ratio $\begin{aligned} & -1=1: 1 \\ & -2=2: 1 \end{aligned}$	3. Motor code $-\cdots$ = alphanumeric motor code (e.g. -AK5). There are several motors that fit each gear and the list of suitable motors is continiously being updated. Please contact customer support for help to see which motors are currently are on the list or if your prefered motor can be added to the list. 4. Type of mounting $-P-M=$ gear supplied mounted to the unit $-P-N=$ gear supplied unmounted	5. Compatable unit type $\begin{aligned} & -01=\text { WH40 } \\ & -02=\text { WH50 } \\ & -03=\text { WH80 } \\ & -04=\text { WH120 } \\ & -05=\text { WM } 40 \end{aligned}$ $-06 \text { = WM60 }$ $-07 \text { = WM80 }$ $-08 \text { = WM120 }$ $-09 \text { = WV60 }$ $-10 \text { = WV80 }$ $-11 \text { = WV120 }$ $-12=\text { WHZ50 }$ $-13 \text { = WHZ80 }$ $-14 \text { = WZ60 }$ -15 = WZ80 $-16 \text { = MLSH60Z }$ $-18 \text { = MLSM80Z }$ $-19 \text { = MLSM60D }$ $-20=\text { MLSM80D }$	

Accessories

Motors, Gears and Transmission Kits

BGM Belt Gears, dimensions

Gear	A	B	C	D	oE	F	G	H	I	J
BGM09	118,7	52	255	140	20 H9	95	115	60	-	-
BGM41	155,2	70	305	165	25 H9	122	147	70	-	-
BGM81	200	73	399	224	30 H9	134	159	90	$90 H 14$	170

BGM09/41/81 - WITHOUT CLEVIS OPTION

BGM09/41/81 - WITH CLEVIS OPTION TYPE S

BGM81 - WITH CLEVIS OPTION TYPE R

The belt gear comes in parts and is assembled to the unit and motor by the customer.

Accessories

Motors, Gears and Transmission Kits

BGM Belt Gears, data

Gear	i	nmax [rpm]	Mmax [Nm]	η	J [$\left.\mathrm{kgm}^{2}\right]$	Weight [kg\}
BGM09	1,04:1	4000	4,1	0,85	0,000102	2
BGM09	1,85:1	4000	4,1	0,85	0,000112	2,1
BGM09	2,85:1	4000	4,1	0,85	0,000213	2,5
BGM41	1:1	4000	22,0	0,85	0,000438	3,4
BGM41	2:1	4000	15,8	0,85	0,000342	3,7
BGM41	3:1	4000	16,7	0,85	0,000583	4,6
BGM81	1:1	4000	29,0	0,85	0,000836	12,1
BGM81	2,25:1	4000	32,3	0,85	0,001051	12,9
BGM81	3,13:1	4000	30,3	0,85	0,001439	14
				= gear ratio	η	= efficiency factor
				$\mathrm{n}_{\max }=$ max. input speed	J	= inertia
				Mmax = max. input torque		

BGM Belt Gears, compatability table

Gear	WMN/R60	wmvso	WMN120	mLSM800	WB60	M50	M55	M75	M100	z2
bgmog	-				-	-	-	-		
BGM41	-	-						-	-	-
BGM81			-	-						

BGM Belt Gears, ordering keys

See next page for ordering keys.

Accessories

Motors, Gears and Transmission Kits

BGM 09 Belt Gears, ordering key

BGM 41 Belt Gears, ordering key

	1	2	3	4	5	6	7	8
Example	BGM41	-1	-CC	071	P	070	X	+S1
1. Type an BGM41 = 2. Gear rat $\begin{aligned} & -1=1: 1 \\ & -2=2: 1 \\ & -3=3: 1 \end{aligned}$ 3. Type of -CC = coni	of belt gear belt gear size lings ouplings		$\begin{aligned} & \text { 4. Motor si } \\ & 071=\text { IEC } \\ & 080=\text { IEC } 8 \\ & S 80=\text { serv } \\ & \text { S95 = serv } \\ & \text { AK5 = ser } \\ & \\ & 5 . \text { Type of } \\ & \text { P = standa } \\ & \text { 6. Compat } \\ & \text { W06 = WN } \\ & \text { W08 = WN } \\ & 070=\text { M75 } \\ & 10 B=\text { M10 } \\ & 10 K=\text { M10 } \end{aligned}$	size 80 size 95 type AKM 5 g type 60, WZ60 80 10B) 10K/C/D)		7. Clevis $X=$ no cle $\mathrm{S}=$ clevis 8. Protec +XX = sta +S1 = wa ${ }^{1}$ This is 0 this gear. see if your	e S ote ion tac mot	s that fit support to gear.

Accessories

Motors, Gears and Transmission Kits

BGM 81 Belt Gears, ordering key

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Example | BGM81 | -1 | -CC | 090 | P | $\mathbf{M 8 D}$ | \mathbf{X} | $+\mathbf{X X}$ |

1. Type and size of belt gear

BGM81 = BGM belt gear size 81
2. Gear ratio
$-1=1: 1$
$-2=2,25: 1$
$-3=3,13: 1$

3. Type of couplings

-CC = conical couplings

4. Motor size ${ }^{1}$

$090=$ IEC 90 B14
$100=\operatorname{IEC}$ 100/121 B14
A20 = servo motor size A200
AK6 = servo motor type AKM 6

5. Type of mounting

$P=$ standard
6. Compatable unit type

W12 = WM120, WV120
M8D $=$ MLSM80D

7. Clevis option

X = no clevis option
$S=$ clevis option type S
$R=$ clevis option type R

8. Protection

$+\mathrm{XX}=$ standard

+ S1 = wash down protection
${ }^{1}$ This is only a selection of all motors that fit this gear. Please contact customer support to see if your prefered motor fits the gear.

Accessories

Motors, Gears and Transmission Kits

Micron DT, DTR Planetary Gears, compatability and dimensions

Unit	Gear	i	$\square \mathrm{A}$	B	C	$\square \mathrm{D}$	E	Weight [kg]	Backlash [arc min]	Efficiency [\%]
WH50	DT60-SS	3:1-10:1	89,7	60	-	-	-	1	8	90
	DT60-DS	15:1-100:1	106,9	60	-	-	-	1,2	9	85
	DTR60-SS	5:1-50:1	-	-	110,2	104,1	60	2,5	9	90
	DTR60-DS	60:1-500:1	-	-	127,3	104,1	60	2,7	9	85
WH8O	DT90-SS	3:1-10:1	110,9	90	-	-	-	3	9	90
	DT90-DS	15:1-100:1	133,5	90	-	-	-	3,7	9	85
	DTR90-SS	5:1-50:1	-	-	145,4	138,2	90	4,8	9	90
	DTR90-DS	60:1-500:1	-	-	168,0	138,2	90	5,5	9	85
WH120	DT115-SS	3:1-10:1	136,4	110	-	-	-	12,7	8	90
	DT115-DS	15:1-100:1	167,4	110	-	-	-	16,2	9	85
	DTR115-SS	5:1-50:1	-	-	185,7	173,5	115	11	8	90
	DTR115-DS	60:1-500:1	-	-	216,7	173,5	115	12	9	85
WM60Z	DT60-SS	3:1-10:1	89,7	60	-	-	-	1	8	90
	DT60-DS	15:1-100:1	106,9	60	-	-	-	1,2	9	85
	DTR60-SS	5:1-50:1	-	-	110,2	104,1	60	2,5	9	90
	DTR60-DS	60:1-500:1	-	-	127,3	104,1	60	2,7	9	85
WM80Z	DT90-SS	3:1-10:1	110,9	90	-	-	-	3	9	90
	DT90-DS	15:1-100:1	133,5	90	-	-	-	3,7	9	85
	DTR90-SS	5:1-50:1	-	-	145,4	138,2	90	4,8	9	90
	DTR90-DS	60:1-500:1	-	-	168,0	138,2	90	5,5	9	85

Micron DT and DTR planetary gears comes mounted on the unit from factory.

DT

Left side
Right side

Position 1

Position 3

DTR

Position 2

Position 4

Accessories

Motors, Gears and Transmission Kits

Micron DT, DTR Planetary Gears, how to order

When ordering a DT or DTR planetary gear you need to state the size and type of gear, which side of the unit the gear shall be installed, the gear ratio and which motor that you wish to use. For DTR you also must state the prefered mounting position of the gear. With this information we can check if your choice of motor is possible or not and give you the correct ordering code for the gear.

Micron DT, ordering data

1. Size of planetary gear
 DT60
 DT90
 DT115

2. Type of gear

-SS
-DS
3. Mounting side of the unit

Left
Right

4. Gear ratio

3:1 (only for -SS models)
5:1 (only for -SS models)
10:1 (only for -SS models)
15:1 (only for -DS models)
25:1 (only for -DS models)
30:1 (only for -DS models)
50:1 (only for -DS models)
100:1 (only for -DS models)

5. Motor

Specify your choice of motor.

Micron DTR, ordering data

1. Type and size of planetary gea
DTR60
DTR90
DTR115
2. Type of gear
-SS
-DS
3. Mounting position of the gear
Position 1
Position 2
Position 3
Position 4
4. Mounting side of the unit
Left
Right

5. Gear ratio

5:1 (only for -SS models)
6:1 (only for -SS models)
9:1 (only for -SS models)
10:1 (only for -SS models)
12:1 (only for -SS models)
15:1 (only for -SS models)
20:1 (only for -SS models)
25:1 (only for -SS models)
30:1 (only for -SS models)
40:1 (only for -SS models)
50:1 (only for -SS models)
60:1 (only for -DS models)
75:1 (only for -DS models)
90:1 (only for -DS models)
100:1 (only for -DS models)
120:1 (only for -DS models)
125:1 (only for -DS models)
150:1 (only for -DS models)
200:1 (only for -DS models)
250:1 (only for -DS models)
300:1 (only for -DS models)
400:1 (only for -DS models)
500:1 (only for -DS models)

6. Motor

Specify your choice of motor.

ELECTROMATE

Accessories

Motors, Gears and Transmission Kits

VWZ Intermediate Shafts, dimensions

Shaft	ØA	B	C	D	ØE	F min.	G
VWZ-30	32	15	1,5	34	30	99	M4
VWZ-40	42	17	1,5	46	40	133	M5
VWZ-60	56	30	2	63	60	177	M6
VWZ-60V	67	35	2	73	60	205	M8
VWZ-80	82	40	2	84	80	249	M10
VWZ-100	102	50	2	97	100	283	M12

I

Critical Speed of Shaft

The VWZ intermediate shafts can be installed in two ways. Either directly to belt driven units (I) or to screw driven units using KRG bevel gears (II) of type VLO, VL1 or VL2. The intermediate shaft includes tube and couplings.

VWZ Intermediate Shafts, data

Shaft	Mmax [Nm]	Gs [kg / m]	Gc [kg]	Js [$\mathrm{kgm}^{2} / \mathrm{m}$]	Jc [kgm^{2}]	Ms [Nm]
VWZ-30	4,8	0,58	0,14	0,00011	0,00001	4
VWZ-40	6,4	0,76	0,36	0,00020	0,00008	8
VWZ-60	22,7	0,97	0,94	0,00080	0,00024	15
VWZ-60V	60,6	0,97	1,42	0,00080	0,00046	35
VWZ-80	122,7	2,00	2,98	0,00300	0,00240	70
VWZ-100	169,7	2,47	4,62	0,00580	0,00600	120

1: VWZ-30
2: VWZ-40
3: VWZ-60 and VWZ-60V
4: VWZ-80
5: VWZ-100

Mmax = max. shaft torque
Gs = weight of shaft

Gc = weight of coupling
Js = inertia of shaft

Jc = inertia of coupling
Ms = tightening torque

Accessories

Motors, Gears and Transmission Kits

VWZ Intermediate Shafts, compatability table

Unit	I	II	VWZ-30	VWZ-40	VWZ-60	VWZ-60V	VWZ-80	VWZ-100	AA [mm]
WH40	-			-					$A A=L+56$
WH50 / WHZ50	-				-				$A A=L+54$
WM60Z	-				-				$A A=L+64$
WH80 / WHZ80	-					-			$A A=L+84$
WH120	-							-	$A A=L+124$
WM80Z	-					-			$A A=L+84$
MLSH60Z	-					-			$A A=L+164$
WB40 / WM40		VLO	-						$A A=L+170$
WB60		VL1			-				$A A=L+184$
WM60 / WV60 / WZ60		VL1			-				$A A=L+184$
WM80 / WV80 / MLSM60D		VL1				-			$A A=L+176$
MLSM80Z	-						-		$A A=L+244$
WM120 / WV120 / MLSM60D / MLSM80D		VL2					-		$A A=L+244$

$A A=C / C$ distance between units
$\mathrm{L}=$ total length of shaft and coupling assembly

VWZ Intermediate Shafts, ordering key

	1	2	3
Example	VWZ-060	-02	-0700

1. Intermediate shaft size

VWZ-030 = VWZ-30
VWZ-040 = VWZ-40
VWZ-060 = VWZ-60
VWZ-06V = VWZ-60V
VWZ-080 = VWZ-80
VWZ-100 = VWZ-100
2. Type of unit and type of mounting
-01 = WH40 for type I mounting
-02 = WH50 / WHZ50 for type I mounting
-03 = WM80Z for type I mounting
-04 = WH80 / WHZ80 for type I mounting
$-05=$ WH120 for type I mounting
$-06=$ WM60Z for type I mounting
-07 = MLSH60Z for type I mounting
$-08=$ WB40 / WM40 for type II mounting on VLO gears
$-09=$ WB60 for type II mounting on VL1 gears
$-10=$ WM60 / WV60 / WZ60 for type II mounting on VL1 gears
-11 = WM80 / WV80 / MLSM60D for type II mounting on VL1 gears
$-12=$ MLSM80Z for type I mounting
-13 = WM120 / WV120 / MLSM60D / MLSM80D for type II mounting on VL2 gears

3. C/C distance between units (AA)

Accessories

Motors, Gears and Transmission Kits

DSP Intermediate Shafts, data

Shaft	Weight of shaft $[\mathrm{kg}]$	Max. speed $[\mathrm{rpm}]$	Shaft diameter [mm]
DSP-05B	$0,3+1,3 \times \mathrm{Lm}$	1500	20
DSP-06B	$0,3+1,3 \times \mathrm{Lm}$	1500	20
DSP-07B	$0,6+2,6 \times \mathrm{Lm}$	1500	30
DSP-10B	$0,6+2,6 \times \mathrm{Lm}$	1500	30
DSB--ZB	$0,6+2,6 \times \mathrm{Lm}$	1500	30
DSP-TBS	$0,6+2,6 \times \mathrm{Lm}$	1500	30

$\mathrm{Lm}=\mathrm{C} / \mathrm{C}$ distance between units in cm

Critical Speed of Shaft

1: No support bearing required
2: Support bearing required for DSP-05B and DSP-06B
3: Support bearing always required

The DSP intermediate shaft can be installed directly between two belt driven units or between two screw driven units using a TBS worm gear. Couplings and tube are included in the shipment. Support bearings may need to be installed if the critical speed of the shaft is exceeded. See diagram. Support bearings can be ordered from your local bearing supplier.

DSP-TBS

Accessories

Motors, Gears and Transmission Kits

DSP Intermediate Shafts, compatability table

Unit	Drive type	DSP-05B	DSP-06B	DSP-07B	DSP-10B	DSP--ZB	DSP-TBS
M50	belt	-					
M55	belt		-				
M75	belt			-			
M100	belt				-		
ZB	belt					-	
M55	screw						-
M75	screw						-
M100	screw						-

DSP Intermediate Shafts, ordering key

	1	2
Example	DSP-06B	-305

```
1. Intermediate shaft size and type
DSP-05B = for belt driven M50 units
DSP-06B = for belt driven M55 units
DSP-07B = for belt driven M75 units
DSP-10B = for belt driven M100 units
DSP--ZB = for belt driven ZB units
DSP-TBS = for screw driven M55, M75 or M100 units with TBS worm gear
```


2. C/C distance between units in cm (Lm)

- •• = length in cm

Accessories

Motors, Gears and Transmission Kits

Spring Set Brake

Unit type	p/n	Nema size	Static torque [lbf-in]	Supply voltage [VDC]	Dimensions [in]							Brake hub $\mathrm{p} / \mathbf{n}^{1}$	Brake adaptor p / n
					F	G	H	J	K	L	HEX		
2DB08	TEB23A	23	NEMA 23	24	2.25	1.10	0.11	2.25	0.22	2.625	5/8	HEXHUB23A	MB08-23
2DB12	TEB23B	23	NEMA 23	24	2.25	1.10	0.11	2.25	0.22	2.625	5/8	HEXHUB23B	none required
2HB10, 2RB12	TEB23D	23	NEMA 23	24	2.25	1.10	0.11	2.25	0.22	2.625	5/8	HEXHUB23D	none required
2RB16	TEB23E	23	NEMA 23	24	2.25	1.10	0.11	2.25	0.22	2.625	5/8	HEXHUB23E	none required
2DB16	TEB34A	34	NEMA 34	24	2.25	1.10	0.11	3.25	0.22	3.875	5/8	HEXHUB34A	none required
2HB20	TEB34C	34	NEMA 34	24	2.25	1.31	0.11	3.25	0.22	3.875	7/8	HEXHUB34A	none required

${ }^{1}$ Hub included in spring set brake

Mounts to support end of 2HB, 2RB, and 2DB units. The brake engages upon loss of power and provides resistance to back drive rotation of ball screws due to gravitational forces when power is interrupted to the brake unit. They are pre-burnished for maximum torque capacity and come with standard NEMA 23, 34 or 42 mounting patterns for easy field retrofit. Compact size minimizes change to the overall system envelope. The 2HB, 2RB, and 2DB ordering keys can be configured with the brake as part of the assembly. See ordering keys or www.linearmotioneering.com for details. The part numbers listed here are for the brake parts as seperate items.

Spring Set Brake Hubs

Brake type	p/n	Unit type	Set screw torque $[i n-\mathrm{lb}]^{1}$	Dimensions [in (mm)]				
				A	B	C	D	E
TEB23A	HEXHUB23A	2DB08	36	1.53	3/16	0.15	\#10/32	5/8
TEB23B	HEXHUB23B	2DB12	36	1.31	1/4	0.26	\#10/32	5/8
TEB23D	HEXHUB23D	2HB10, 2RB12	36	(20)	(8)	(5)	M4	5/8
TEB23E	HEXHUB23E	2RB16	36	(20)	(20)	(5)	M4	5/8
TEB34A	HEXHUB34A	2 DB16	36	1.67	3/8	0.44	\#10/32	5/8
TEB34C	HEXHUB34A	$2 \mathrm{HB20}$	36	(32)	14	(6)	M5	7/8

${ }^{1}$ It is suggested a serviceable thread locking compound be used.

HEXHUB•••

SPLHUB42A

Toll Free Fax (877) SERVO99

Accessories

Electrical Feedback Devices

Limit Switch Brackets ${ }^{1}$

Unit type	I	For limit switch type	II	For limit switch type
M50	D393 035	ZCM-D21	-	-
M55	D313 427	ZCM-D21	D313 428	ZCM-D21
M75	D312 860	XCK-M115	D312 861	XCK-M115
M100	D312 330	XCK-M115	D312 331	XCK-M115

${ }^{1}$ No limit switches included in the shipment.

I

II

Limit Switch Brackets for Z3

Unit type	\mathbf{p} / \mathbf{n}	For limit switch type
Z3	D800 042	XCK-M115

The limit switch brackets are adjustable in height. The limit switches on the brackets are operated by the maximum extended and maximum retracted end of stroke bars on top of the Z 3 units. Two brackets are required.

Limit Switches

Switch type	p/n	Protection degree	Contacts	Cable
XCK-M115	D535 107	IP67	NO + NC	-
ZCM-D21	D535 102	IP67	NO + NC	- meter

Accessories

Electrical Feedback Devices

Sensor Brackets for Cylindrical Sensors ${ }^{1}$

Unit type	I	For sensor diameter	II	For sensor diameter
M55	D313 429	M12	D313 430	M12
M75	D312 862	M18	D312 863	M18
M100	D312 332	M18	D312 333	M18

${ }^{1}$ no sensors included in the shipment

I

II

Cylindrical Inductive Sensors

Sensor type	p/n	Diameter	Input voltage	Max. current	Protection degree	Contacts	Cable
PNP	D535 085	M12	$12-48 \mathrm{Vdc}$	$0,2 \mathrm{~A}$	IP67	NO	connector
PNP	D535 089	M18	$12-48 \mathrm{Vdc}$	$0,2 \mathrm{~A}$	IP67	NO	connector

Cylindrical Inductive Sensor Connectors

For sensor diameter	\mathbf{p} / \mathbf{n}
M12	D535 092
M18	D535 091

Toll Free Fax (877) SERV099

Accessories

Electrical Feedback Devices

Sensor Packages

Unit type	Package type	p/n	Output type	Output operation	Frequency ${ }^{1}$	Supply voltage [VDC]	Cable length [m]	Sdetract [mm]
2HB10	One home sensor	LSP2HBM10-N-1	NPN	NO	$1 \times \mathrm{V}$	12-24	5	-
		LSP2HBM10-P-1	PNP	NO	$1 \times \mathrm{V}$	12-24	5	-
	Two limit switch sensors	LSP2HBM10-N-2	NPN	NC	$2 \times S$	12-24	5	30
		LSP2HBM10-P-2	PNP	NC	$2 \times S$	12-24	5	30
	One home and two limit switch sensors	LSP2HBM10-N-3	NPN	$1 \times N C, 2 \times N O$	$1 \times \mathrm{V}, 2 \times S$	12-24	5	30
		LSP2HBM10-P-3	PNP	$1 \times \mathrm{NC}, 2 \times \mathrm{NO}$	$1 \times \mathrm{V}, 2 \times S$	12-24	5	30
2HB20	One home sensor	LSP2HBM20-N-1	NPN	NO	$1 \times \mathrm{V}$	12-24	5	-
		LSP2HBM20-P-1	PNP	NO	$1 \times \mathrm{V}$	12-24	5	-
	Two limit switch sensors	LSP2HBM20-N-2	NPN	NC	$2 \times S$	12-24	5	30
		LSP2HBM20-P-2	PNP	NC	$2 \times S$	12-24	5	30
	One home and two limit switch sensors	LSP2HBM20-N-3	NPN	$1 \times \mathrm{NC}, 2 \times \mathrm{NO}$	$1 \times \mathrm{V}, 2 \times S$	12-24	5	30
		LSP2HBM20-P-3	PNP	$1 \times \mathrm{NC}, 2 \times \mathrm{NO}$	$1 \times \mathrm{V}, 2 \times S$	12-24	5	30
2RB12	One home sensor	LSP2RM12-N-1	NPN	NO	$1 \times \mathrm{V}$	12-24	5	-
		LSP2RM12-P-1	PNP	NO	$1 \times \mathrm{V}$	12-24	5	-
	Two limit switch sensors	LSP2RM12-N-2	NPN	NC	$2 \times S$	12-24	5	35
		LSP2RM12-P-2	PNP	NC	$2 \times S$	12-24	5	35
	Home and limit switch sensors	LSP2RM12-N-3	NPN	$1 \times N C, 2 \times N O$	$1 \times \mathrm{V}, 2 \times S$	12-24	5	35
		LSP2RM12-P-3	PNP	$1 \times$ NC, $2 \times$ NO	$1 \times \mathrm{V}, 2 \times \mathrm{S}$	12-24	5	35
2RB16	One home sensor	LSP2RM16-N-1	NPN	NO	$1 \times V$	12-24	5	-
		LSP2RM16-P-1	PNP	NO	$1 \times \mathrm{V}$	12-24	5	-
	Two limit switch sensors	LSP2RM16-N-2	NPN	NC	$2 \times S$	12-24	5	35
		LSP2RM16-P-2	PNP	NC	$2 \times S$	12-24	5	35
	One home and two limit switch sensors	LSP2RM16-N-3	NPN	$1 \times \mathrm{NC}, 2 \times \mathrm{NO}$	$1 \times V, 2 \times S$	12-24	5	35
		LSP2RM16-P-3	PNP	$1 \times N C, 2 \times N O$	$1 \times \mathrm{V}, 2 \times S$	12-24	5	35

${ }^{1} \mathrm{~V}=$ varied frequency. $\mathrm{S}=$ standard frequency.

LIMIT SWITCH POSITION 2HBE

LIMIT SWITCH POSITION 2RB

Each 2 HB and 2RB can be equipped with sensors inside of the profile where they are protected from mechanical damage. The systems are provided with access holes on each side of each end plate for passage of the sensor package cable. Using limit switch sensors will reduce the effective stroke. The standard position will approximately reduce the stroke by the distance listed in the Sdetract column. The $2 \mathrm{HB}, 2 \mathrm{RB}, 2 \mathrm{HE}$ and 2 RE ordering keys can be configured with the limit switches and/or a home sensor as part of the assembly. See ordering keys or www.linearmotioneering.com for details. The part numbers listed above are for the limit switches and/or home sensors as a seperate items.

Accessories

Electrical Feedback Devices

EN2 Inductive Sensors, part numbers

Sensor type	Cable length $[\mathbf{m}]$	p/n
Normally closed	2	6715450305
Normally open	2	6715450304
Normally closed	10	6715450307
Normally open	10	6715450306

To be able to mount the EN2 inductive sensors on a unit the ENT14×16 sensor rail is required (see page 178) except for units WM120 and WV120 where they can be fitted directly to the profile of the unit.

EN2 Inductive Sensors, data

Parameter		EN2
Supply voltage	[Vdc]	$10-30$
Max. load current	$[\mathrm{mm})$	0,2
Operating distance		2
LED indicator for switch		yes
Protection class	[kg]	IP67
Cable type		screened
Weight with cable L $=2 \mathrm{~m}$ with cable L=10		0,04

Magnetic Sensors, data

Parameter		
Max. power	$[\mathrm{W}]$	10
Max. voltage	[A]	0,5
Max. current		100
LED indicator for switch	no	
Protection class	$[\mathrm{m}]$	IP67
Cable length	$\left[\mathrm{mm}^{2}\right]$	$2 \times 0,15$
Cable cross section	$\left[{ }^{\circ} \mathrm{C}\right]$	$-25-65$
Operating temperature limits	$[\mathrm{kg}]$	0,050
Weight		

Magnetic Sensors, part numbers

Sensor type	suitable units	p/n
Normally closed	M50, Z2, Z3	D535 071
Normally open	M50, Z2, Z3	D535 070

On M50 the magnetic sensors are mounted directly in the sensor slot of the profiles of the units and require no mounting bracket while Z2 and Z3 require magnetic sensor mounting brackets. The sensor is fixed in position by two M3 size locking screws (A1). The cable (A2) is molded into the sensor.

Toll Free Fax (877) SERV099

Accessories

Electrical Feedback Devices

IG602 Encoders, data

Parameter		IG602
Supply voltage Type 1 Type 2	[Vdc]	$\begin{aligned} & 5 \pm 10 \% \\ & 10-30 \end{aligned}$
Output type Type 1 Type 2		line driver push-pull
Pulses per revolution Type 1 Type 2	[ppr]	$\begin{gathered} 100-2500 \\ 100-600 \end{gathered}$
Length (L) Type 1 Type 2	[mm]	$\begin{aligned} & 51,5 \\ & 56,0 \end{aligned}$
Weight Type 1 Type 2	[kg]	$\begin{aligned} & 0,36 \\ & 0,36 \end{aligned}$

The IG602 encoders come with mounting screws but no coupling or connector. To be able to mount the encoder to the unit, the unit must have a shaft for encoders. See the ordering keys of the units. The encoders can also be ordered mounted to the unit from factory. See ADG encoder option kit on page 174.

IG602 Encoders, part numbers

Encoder type	Supply voltage [Vdc)	Pulses per revolution	$\mathbf{p / n}$
Type 1	5	100	6715210194
Type 1	5	200	6715210195
Type 1	5	500	6715210196
Type 1	5	600	6715210197
Type 1	5	1000	6715210198
Type 1	5	1250	6715210199
Type 1	5	1500	6715210200
Type 1	5	2000	6715210192
Type 1	5	2500	6715210201
Type 2	$10-30$	100	6715210193
Type 2	$10-30$	200	6715210202
Type 2	$10-30$	500	6715210203
Type 2	$10-30$	600	6715210204
2	5		

STE001 Encoder Connector, data

Parameter		STE001
Number of poles		I2
Protection class		IP67
Execution		jack
Cable entrance	straight	
Weight		0,04
Part number		6715600153

Encoder Cable, data

Parameter	p/n
5 m cable length	6715550068
10 m cable length	6715550069

The encoder cables come fitted with a STEOO1 encoder connector in one of the ends.

ELECTROMATE

Accessories

Electrical Feedback Devices

ES Limit Switch Option Kit

Unit type	I	11	III	A	B	C	D	E	F	G
WH50 ${ }^{1}$	-			34	60,5	10	26	49	58,5	196
WH80	-			31	76	10	39	49	78,5	196
WH120	-			34	88	10	51	49	78,5	196
WHZ50	-			34	61	10	26	49	58,5	196
WHZ80	-			31	76	10	39	49	78,5	196
WM60		-		40	69	32	38	50	63	200
WM80		-		40	73	32	42	50	79	200
WM120		-		40	89	32	58	50	94	200
WM60Z	-			40	69	32	38	50	73	200
WM80Z ${ }^{2}$	-			40	73	32	42	50	99 (89)	200
WV60		-		40	69	32	38	50	33	200
WV80		-		40	73	32	42	50	39	200
WV120		-		40	89	32	58	50	59	200
MLSM60D		-		40	73	32	32	50	79	200
MLSH60Z	-			40	73	32	42	50	79	200
MLSM80D		-		40	85	32	54	50	101	200
MLSM80Z		-		40	85	32	54	50	101	200
WZ60 ${ }^{1}$			-	60	22,5	16	30	113	53	-
WZ80 ${ }^{1}$			\bullet	60	22,5	16	30	112	84	-

${ }^{1}$ limit switches for these units can not be moved. On all other units the switches can be re-positioned by the customer. ${ }^{2}$ Value in brackets $=$ for short carriage.

The ES limit switch assembly is an option that is mounted at the factory. The limit switches are placed 10 mm from the mechanical ends of the unit. Each limit switch has one NO and one NC contact with positive opening action. Protection degree is IP67. Type I and II switches can be repositioned along the profile by the customer. Note! the ES limit switch option and any of the sensor rail options ENT14x16, ENF14x16 or ENK can not be mounted on the same side of the unit.

Toll Free Fax (877) SERV099

Accessories

Electrical Feedback Devices

ES Limit Switch Option Kit, ordering key

	1	2	3	4
Example	ESK07	$-L$	-01	-10

1. Compatable unit

ESK02 = WH50
ESK03 = WH80
ESK04 $=$ WH120
ESK05 = WM40
ESK06 = WM60 / WM60Z
ESK07 = WM80 / WM80Z
ESK08 = WM120
ESK09 = WV60
ESK10 = WV80
ESK11 = WV120
ESK12 = WHZ50
ESK13 $=$ WHZ80
ESK14 = WZ60
ESK15 = WZ80
ESK16 = MLSH60Z
ESK18 = MLSM80Z
ESK19 = MLSM60D
ESK20 $=$ MLSM80D
2. Mounting side of the unit
$-L=$ left side
$-R=$ right side
3. Switch configuration on side A
$-00=$ no switch on side A
-01 = switch with 1 m cable
$-05=$ switch with 5 m cable
$-10=$ switch with 10 m cable
4. Switch configuration on side B
$-00=$ no switch on side B
$-01=$ switch with 1 m cable
$-05=$ switch with 5 m cable
$-10=$ switch with 10 m cable

ES-••R-•••••

Accessories

Electrical Feedback Devices

ENT14x16 Inductive Sensor Rail

Unit type		
	WH40 / WH50 / WH80 / WH120 / WHZ50 / WHZ80 / WM40 / WM60 / WM80 / WM60Z / WM80Z / WV60 / WV80 /	p/n
MLSM60D / MLSM80D / MLSH60Z / MLSM80Z / WZ60 / WZ80 / WB40 / WB60	6715450283	

The ENT14x16 inductive sensor rail is mounted to the side of a unit or along any type of beam or profile. Sensors of type EN2 can be mounted in the rail. The rail can also serve as a cable duct for the sensor cables. The rail is sealed with a cover which comes with the rail. The rail comes in lengths of max 3000 mm . Drilling in the profile of the unit is required when mounting the rail. When ordering, specify part number and length of the rail. Note1! WM120 and WV120 units do not require any rail as the EN2 sensors can be fitted directly to the profile of the units. Note2! ES limit switch option and ENT14x16 rail can not be mounted on the same side of the unit.

ENF and ENK Inductive Sensor Rail Option Kit, compatability table

Unit type

ENF/ENK
WH40 / WH50 / WH80 / WH120 / WHZ50 / WHZ80 / WM40 / WM60 / WM80 / WM60Z / WM80Z / WV60 / WV80 / MLSM60D / MLSM80D / MLSH60Z / MLSM80Z / WZ60 / WZ80 / WB40 / WB60

The ENF and ENK inductive sensor rail option kits are mounted at the factory. The ENF option consists of two 500 mm long ENT14x16 sensor rails mounted in each end of the unit on the left or right side of the profile. In cases where the unit is too short to allow two 500 mm sensor rails to be mounted, then one rail is mounted along the entire profile of the unit. The ENK option also consists of ENT14 x16 sensor rails but the ENK option has sensor profiles that run along the entire profile of the unit. In the shipment of both ENF and ENK the specified amount and type of EN2 sensors are included. The sensors are fitted to the sensor rail by the customer at the desired positions. Note1! WM120 and WV120 units do not require any ENF or ENK options as the EN2 sensors can be fitted directly to the profile of the units. Note2! The ES limit switch option and ENF rail can not be mounted on the same side of the unit.

Accessories

Electrical Feedback Devices

ENK and ENF Inductive Sensor Rail Option Kit, ordering key

	1	2	3	4	5	6	7	8
Example	ENK16	$-S$	-04000	$-R$	-2	-0	-1	-6

1. Type of rail and compatable unit

ENK01 = ENK rail for WH40
ENK02 = ENK rail for WH50
ENK03 = ENK rail for WH80
ENK04 = ENK rail for WH120
ENK05 = ENK rail for WM40
ENK06 = ENK rail for WM60 / WV60
ENK07 = ENK rail for WM80 / WV80
ENK08 = ENK rail for WM120 / WV120
ENK09 = ENK rail for WM60Z
ENK10 = ENK rail for WM80Z
ENK11 = ENK rail for WHZ50
ENK12 = ENK rail for WHZ80
ENK13 = ENK rail for WZ60
ENK14 = ENK rail for WZ80
ENK15 = ENK rail for MLSH60Z
ENK17 = ENK rail for MLSM80Z
ENK18 = ENK rail for MLSM60D
ENK19 = ENK rail for MLSM80D
ENK20 = ENK rail for WB40
ENK21 = ENK rail for WB60

ENFO1 = ENF rail for WH40
ENF02 = ENF rail for WH50
ENF03 = ENF rail for WH8O
ENFO4 = ENF rail for WH120
ENF05 = ENF rail for WM40
ENF06 = ENF rail for WM60 / WV60
ENF07 = ENF rail for WM80 / WV80
ENF08 = ENF rail for WM120 / WV120
ENF09 = ENF rail for WM60Z
ENF10 = ENF rail for WM80Z
ENF11 = ENF rail for WHZ50
ENF12= ENF rail for WHZ80
ENF13 = ENF rail for WZ60
ENF14 = ENF rail for WZ80
ENF15 = ENF rail for MLSH60Z
ENF17 = ENF rail for MLSM80Z
ENF18 = ENF rail for MLSM60D
ENF19 = ENF rail for MLSM80D
ENF20 = ENF rail for WB40
ENF21 = ENF rail for WB60

2. Number of carriages

-S = single carriage
$-D=$ double carriages
3. Total length of unit (L tot)
-••••• = distance in mm
4. Mounting side of the unit
$-L=$ left side
$-R=$ right side
5. Number of EN2 sensors with NC contact and 2 m cable
$-\bullet=0-9$ sensors / normally closed $/ 2 \mathrm{~m}$ cable
6. Number of EN2 sensors with NO contact and 2 m cable
$-\bullet=0-9$ sensors / normally open $/ 2 \mathrm{~m}$ cable

7. Number of EN2 sensors with NC contact and 10 m cable
 $-\bullet=0-9$ sensors / normally closed / 10 m cable

8. Number of EN2 sensors with NO contact and 10 m cable

$-\bullet=0-9$ sensors / normally open / 10 m cable

Accessories

Electrical Feedback Devices

ADG Encoder Option Kit

Unit type	Mounting type I	Mounting type II	A	B	øC	D
WH40	-		115	95	58,5	${ }_{\square} 60$
WH50 / WHZ50	-		120	96	58,5	50×50
WH80 / WHZ80	-		139	100	58,5	90×90
WH120	-		153	93	58,5	100×100
WM40		-	25	95	58,5	-
WM60		-	31	95	58,5	-
WM80		-	40	95	58,5	-
WM120		-	74	95	58,5	-
WM60Z	-		124	94	58,5	60×60
WM80Z	-		138	98	58,5	65×65
WB40		-	20,8	95	58,5	-
WB60		-	32,5	95	58,5	-
MLSM60D		-	37	95	58,5	-
MLSM80D		-	46	95	58,5	-
MLSH60Z	-		174,5	95	58,5	78×59
MLSM80Z	-		214,5	95	58,5	100×80

The ADG encoder option kit is an option that is mounted to the unit at the factory. It includes an IG602 encoder, a STEOO1 encoder connector and an encoder mounting flange with coupling. Cable can also be supplied in 5 or 10 meter lengths.

ELECTROMATE

Accessories

Electrical Feedback Devices

ADG Encoder Option Kit, ordering key

	1	2	3
Example	ADG-08	$-05-0600$	-00

1. Compatable unit

ADG-01 = WH40
ADG-02 = WH50 / WHZ50
ADG-03 = WH80 / WHZ80
ADG-04 $=$ WH120
ADG-05 = WM40
ADG-06 = WM60 / WV60
ADG-07 = WM80 / WV80
ADG-08 = WM120 / WV120
ADG-09 = WM60Z
ADG-10 = WM80Z
ADG-11 = MLSH60Z
ADG-13 = MLSM80Z
ADG-14 = MLSM60D
ADG-15 = MLSM80D
ADG-16 = WB40
ADG-17 = WB60

2. Supply voltage and number of pulses

$-05-0100=5$ volts, 100 pulses per revolution
$-05-0200=5$ volts, 200 pulses per revolution
$-05-0500=5$ volts, 500 pulses per revolution
$-05-0600=5$ volts, 600 pulses per revolution
$-05-1000=5$ volts, 1000 pulses per revolution
$-05-1250=5$ volts, 1250 pulses per revolution
$-05-2000=5$ volts, 2000 pulses per revolution
$-05-2500=5$ volts, 2500 pulses per revolution
$-24-0100=10-30$ volts, 100 pulses per revolution
$-24-0200=10-30$ volts, 200 pulses per revolution
$-24-0500=10-30$ volts, 500 pulses per revolution
$-24-0600=10-30$ volts, 600 pulses per revolution

3. Cable and connector configuation

$-00=$ no cable only STE001 encoder connector
$-05=5 \mathrm{~m}$ cable with STEOO1 encoder connector in one of the ends
$-10=10 \mathrm{~m}$ cable with STEOO1 encoder connector in one of the ends

ELECTROMATE

Accessories

Non Driven Linear Motion Systems

WH4ON

" Ordering key - see page 210
" Technical data - see page 82

A1: depth 10
A2: lubricating nipple on both sides DIN3405 D 1/A

WH5ON

" Ordering key - see page 210
» Technical data - see page 110

Dimensions	Projection
METRIC	\square ©

Accessories

Non Driven Linear Motion Systems

" Ordering key - see page 210
" Technical data - see page 112

A1: depth 12
A2: funnel type lubricating nipple DIN3405-M6×1-D1

WH120N

"Ordering key - see page 210
" Technical data - see page 114

ELECTROMATE

Accessories

Non Driven Linear Motion Systems

WM40N \quad| "Ordering key- see page 210 |
| :--- |
| "Technical data- see page 14 |

A1: depth 7
A2: lubricating nipple on both sides DIN3405 D 1/A

Accessories

Non Driven Linear Motion Systems

" Ordering key - see page 210
" Technical data - see page 20

A1: depth 11
A2: socket cap screw IS04762-M6×20 8.8

WM80N

A3: tapered lubricating nipple to DIN71412 AM6
A4: can be changed over to one of the three alternative lubricating points by the customer
" Ordering key - see page 210
" Technical data - see page 24

Dimensions	Projection
METRIC	\square

ELECTROMATE

Accessories

sales@electromate.com	
Dimensions	Projection
METRIC	$\square \Theta$

Non Driven Linear Motion Systems

WM80N with Single Short Carriage

" Ordering key - see page 210
" Technical data - see page 26

A1: depth 12
A2: socket cap screw IS04762-M6×20 8.8

WM120N

A3: tapered lubricating nipple to DIN71412 AM6
A4: can be changed over to one of the three alternative lubricating points by the customer
" Ordering key - see page 210
" Technical data - see page 34

Dimensions	Projection
METRIC	- ®-

Accessories

Non Driven Linear Motion Systems

M75N \quad "Ordering key - see page 211

A1: lubrication holes $\varnothing 6$ (MG07N), $\varnothing 10$ (MF07N)
A2: 150 (MG07N), 100 (MF07N)
A3: 24 (MG07N), 43 (MF07N)
A4: 300 (MG07N), 320 (MF07N)
A5: depth 8 Heli coil
A6: $\varnothing 13,5$ / $\varnothing 8,5$ for socket head cap screw M8
" Ordering key - see page 211
" Technical data - see page 44

Dimensions	Projection
METRIC	

Additional Technical Data

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

Technical Data

Toll Free Fax (877) SERVO99

sales@electromate.com

Additional Technical Data

Linear Motion Systems with Ball Screw and Slide Guides

Technical Data

Parameter	M55	M75	M100
Geometrical moment of $\left[\mathrm{mm}^{4}\right]$ inertia of the profile (ly)	$4,27 \times 10^{5}$	$1,9 \times 10^{6}$	$5,54 \times 10^{6}$
Geometrical moment of $\left[\mathrm{mm}^{4}\right]$ inertia of the profile (lz)	$3,4 \times 10^{5}$	$1,15 \times 10^{6}$	$3,86 \times 10^{6}$
Friction factor of the guide system (μ)	0,15	0,15	0,15
Efficiency ball nut unit composite nut unit	$\begin{aligned} & 0,8 \\ & 0,5 \end{aligned}$	$\begin{aligned} & 0,8 \\ & 0,5 \end{aligned}$	$\begin{aligned} & 0,8 \\ & 0,5 \end{aligned}$
Bending factor (b)	0,0005	0,0005	0,0005
Inertia of ball screw (jsp) [$\left.\mathrm{kgm}^{2} / \mathrm{m}\right]$	$4,1 \times 10^{-5}$	$1,6 \times 10^{-4}$	$2,5 \times 10^{-4}$
Dynamic load rating of ball screw (Cx) 05 mm lead $05,8 \mathrm{~mm}$ lead 08 mm lead 10 mm lead $12,7 \mathrm{~mm}$ lead 20 mm lead 25 mm lead 32 mm lead	$\begin{gathered} 9300 \\ 5420 \\ - \\ 15400 \\ - \\ 1900 \\ - \\ 2000 \end{gathered}$	$\begin{gathered} 10400 \\ - \\ - \\ - \\ 17960 \\ 10400 \end{gathered}$	$\begin{gathered} 12500 \\ - \\ - \\ 20600 \\ - \\ - \\ 11800 \end{gathered}$

Linear Motion Systems with Belt Drive and Ball Guides

Technical Data

Parameter		WH40	WM60Z	WM80Z	M55	M75	M100	MLSM80Z
Geometrical moment of inertia of the profile (ly)	[mm^{4}]	$12,6 \times 10^{4}$	$5,62 \times 10^{5}$	$1,85 \times 10^{6}$	$4,59 \times 10^{5}$	$1,9 \times 10^{6}$	$5,54 \times 10^{6}$	$3,77 \times 10^{6}$
Geometrical moment of inertia of the profile (Iz)	[mm^{4}]	$15,3 \times 10^{4}$	$5,94 \times 10^{5}$	$1,94 \times 10^{6}$	$3,56 \times 10^{5}$	$1,15 \times 10^{6}$	$3,86 \times 10^{6}$	$4,71 \times 10^{7}$
Friction factor of the guide system (μ)		0,05	0,1	0,1	0,02	0,02	0,02	0,1
Efficiency of the unit		0,85	0,85	0,85	0,95	0,95	0,95	0,85
Bending factor (b)		0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005
Specific mass of belt	[kg/m]	0,032	0,074	0,14	0,09	0,16	0,31	0,517
Inertia of pulleys (Jsyn)	[kgm^{2}]	$8,8 \times 10^{-6}$	$2,13 \times 10^{-5}$	$1,12 \times 10^{-4}$	$1,7 \times 10^{-5}$	$6,8 \times 10^{-5}$	$8,5 \times 10^{-5}$	$5,077 \times 10^{-4}$
Dynamic load rating of ball guide (Cy)	[N]	2×2650	2×12964	$\begin{gathered} 4 \times 18723 \\ (2 \times 18723)^{1} \end{gathered}$	2×2717	2×8206	2×13189	4×17965
Dynamic load rating of ball guide (Cz)	[N]	2×3397	2×11934	2×17919	2×3484	2×15484	2×24885	4×17965
Distance between ball guide carriages (Lx)	[mm]	72	-	-	78	96	140	185
Distance between ball guide carriages (Ly)	[mm]	-	35	49,75	-	-	-	164

[^22]
Additional Technical Data

Linear Motion Systems with Belt Drive and Slide Guides

Technical Data

Parameter		M50	M55	M75	M100
Geometrical moment of inertia of the profile (ly)	[mm^{4}]	$2,61 \times 10^{5}$	$4,59 \times 10^{5}$	$1,9 \times 10^{6}$	$5,54 \times 10^{6}$
Geometrical moment of inertia of the profile (Iz)	[mm^{4}]	$2,44 \times 10^{5}$	$3,56 \times 10^{5}$	$1,15 \times 10^{6}$	$3,86 \times 10^{6}$
Friction factor of the guide system (μ)		0,15	0,15	0,15	0,15
Efficiency of the unit		0,85	0,85	0,85	0,85
Bending factor (b)		0,0005	0,0005	0,0005	0,0005
Specific mass of belt	[kg/m]	0,086	0,09	0,16	0,31
Inertia of pulleys (Jsyn)	[kgm^{2}]	$3,1 \times 10^{-5}$	$1,7 \times 10^{-5}$	$6,8 \times 10^{-5}$	$8,5 \times 10^{-5}$

Linear Motion Systems with Belt Drive and Wheel Guides

Technical Data

Parameter		WH50	WH80	WH120	MLSH60Z
Geometrical moment of inertia of the profile (ly)	[mm]	$3,3 \times 10^{5}$	$1,93 \times 10^{6}$	$6,69 \times 10^{6}$	$1,29 \times 10^{6}$
Geometrical moment of inertia of the profile (lz)	[mm]	$2,65 \times 10^{5}$	$1,8 \times 10^{6}$	$6,88 \times 10^{6}$	$1,2 \times 10^{7}$
Friction factor of the guide system (μ)		0,1	0,1	0,1	0,1
Efficiency of the unit		0,85	0,85	0,85	0,85
Bending factor (b)		0,0005	0,0005	0,0005	0,0005
Specific mass of belt	[kg/m]	0,055	0,21	0,34	0,119
Inertia of pulleys (Jsyn)	[kgm^{2}]	$1,928 \times 10^{-5}$	2.473×10^{-4}	$1,004 \times 10^{-3}$	$4,604 \times 10^{-5}$
Dynamic load rating of wheel guide (Cy)	[N]	-	-	-	4×1266
Dynamic load rating of wheel guide (Cz)	[N]	4×1270	4×3670	4×16200	4×1266
Distance between carriage wheels (Lx)	[mm]	198	220	180	109
Distance between carriage wheels (Ly)	[mm]	39	65	97	102,5

Toll Free Fax (877) SERVO99

sales@electromate.com

Additional Technical Data

Linear Lifting Systems

Technical Data

Parameter		WHZ50	WHZ80	Z2	Z3
Geometrical moment of inertia of the profile (lx)	[mm^{4}]	-	-	$1,87 \times 10^{7}$	$1,87 \times 10^{7}$
Geometrical moment of inertia of the profile (ly)	[mm^{4}]	$3,3 \times 10^{5}$	$1,93 \times 10^{6}$	$2,19 \times 10^{7}$	$2,19 \times 10^{7}$
Geometrical moment of inertia of the profile (Iz)	[mm^{4}]	$2,65 \times 10^{5}$	$1,8 \times 10^{6}$	-	-
Dynamic load rating of ball screw (Fx)	[N]	belt drive	belt drive	-	-
Dynamic load rating of ball screw (Fz) ball screw ø 25 lead 10 mm ball screw ø 25 lead 25 mm ball screw $ø 32$ lead 10 mm	[N			$\begin{aligned} & 21248 \\ & 11182 \\ & 47200 \end{aligned}$	$\begin{aligned} & 21248 \\ & 11182 \\ & 47200 \end{aligned}$
Friction factor of the guide system (μ)		0,1	0,1	0,15	0,15
Efficiency of the unit		0,85	0,85	0,8	0,8
Specific mass of belt	[kg/m]	0,055	0,119	-	-
Inertia of pulleys (Jsyn)	[kgm^{2}]	$6,906 \times 10^{-5}$	$5,026 \times 10^{-4}$	-	-
Inertia of ball screw (jsp) ball screw ø 25 lead 10 ball screw ø 25 lead 25 ball screw ø 32 lead 10	[kgm²/m]	-	-	$\begin{gathered} 2,1 \times 10^{-4} \\ 2,6 \times 10^{-4} \\ 6,43 \times 10^{-4} \end{gathered}$	$\begin{gathered} 2,1 \times 10^{-4} \\ 2,6 \times 10^{-4} \\ 6,43 \times 10^{-4} \end{gathered}$
Dynamic load rating of ball guide (Cx)	[N]	-	-	slide guide	slide guide
Dynamic load rating of ball guide (Cy)	[N]	4×1270	4×3670	slide guide	slide guide
Distance between ball guide carriages (Lx)	[mm]	198	220	-	-
Distance between ball guide carriages (Ly)	[mm]	39	65	slide guide	slide guide
Distance between ball guide carriages (Lz)	[mm]	-	-	slide guide	slide guide
Definition of forces					

THOMSON Free Pione (877) SERVUg: Toll Free Fax (877) SERV099
Linear Motion. Optimized."

Additional Technical Data

Linear Rod Units

Technical Data

Parameter		WZ60	WZ80
Geometrical moment of inertia of the profile (ly)	[mm^{4}]	$5,8 \times 10^{5}$	$1,85 \times 10^{6}$
Geometrical moment of inertia of the profile (lz)	[mm^{4}]	$5,9 \times 10^{5}$	$1,94 \times 10^{6}$
Friction factor of the guide system (μ)		0,1	0,1
Efficiency of the unit		0,8	0,8
Inertia of ball screw (jsp) 05 mm lead 10 mm lead 20 mm lead 25 mm lead 32 mm lead 40 mm lead 50 mm lead	[$\left.\mathrm{kgm}^{2} / \mathrm{m}\right]$	$\begin{gathered} 8,46 \times 10^{-5} \\ - \\ 8,46 \times 10^{-5} \\ - \\ - \\ - \\ 8,46 \times 10^{-5} \end{gathered}$	$\begin{gathered} 2,25 \times 10^{-4} \\ 2,25 \times 10^{-4} \\ 2,25 \times 10^{-4} \\ - \\ - \\ - \\ 2,25 \times 10^{-4} \end{gathered}$
Dynamic load rating of ball screw (Cx) 05 mm lead 10 mm lead 20 mm lead 25 mm lead 32 mm lead 40 mm lead 50 mm lead	[N]	$\begin{gathered} 10500 \\ - \\ 11600 \\ - \\ - \\ - \\ 8400 \end{gathered}$	$\begin{gathered} 12300 \\ 13200 \\ 13000 \\ - \\ - \\ - \\ 15400 \end{gathered}$
Dynamic load rating of ball guide (Cy)	[N]	2×12964	2×18723
Dynamic load rating of ball guide (Cz)	[N]	2×11943	2×17919
Distance between ball guide carriages (Lx)	[mm]	-	-
Distance between ball guide carriages (Ly)	[mm]	35	50
Dynamic rating of the ball bushing	[N]	8300	13700

Drive Calculations

Screw Driven Linear Motion Systems

Feed Force Formula [N]

$F_{x}=m \times g \times \mu$
Acceleration Force Formula [N]
$\mathrm{Fa}=\mathrm{m} \times \mathrm{a}$

Power Formula [kW]

$P=\frac{M_{A} \times n_{\max } \times 2 \times 3,14}{60 \times 1000}$

Drive Moment Formulas [Nm]

$M_{A}=$ Mload + Mtrans + Mrot $+M$ idle

$$
\text { Mload }=\frac{F_{x} \times p}{2 \times 3,14 \times 1000}
$$

$M_{\text {trans }}=\frac{\mathrm{Fa}_{\mathrm{a}} \times \mathrm{p}}{2 \times 3,14 \times 1000}$
Mrot $=j s p \times \frac{2 \times 3,14 \times n_{\max } \times a \times 2}{V_{\max } \times 60 \times 1000}$
M idle $=$ see table for unit in question

Fx	$=$ feed force $[\mathrm{N}]$
m	$=$ total mass to be moved $[\mathrm{kg}]^{1}$
g	$=$ acceleration due to gravity $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
μ	$=$ friction factor specific for each unit

= acceleration force [N]
= mass to be operated [kg]
$=$ acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right)^{2}$

P	$=$ required power $[\mathrm{kW}]$
M_{A}	$=$ required drive moment $[\mathrm{Nm}]$
$n_{\text {max }}$	$=$ maximum required rotational speed $[\mathrm{rpm}]$

M_{A}	$=$ required drive moment $[\mathrm{Nm}]$
Mload	$=$ moment as a result of various loads $[\mathrm{N}]$
Mtrans	$=$ translational acceleration moment $[\mathrm{Nm}]$
Mrot	$=$ rotational acceleration moment $[\mathrm{Nm}]$
M idle	$=$ carriage $/$ rod idle torque $[\mathrm{Nm}]^{3}$
Fx	$=$ feed force $[\mathrm{N}]$
p	$=$ screw lead $[\mathrm{mm}]$
Fa	$=$ maximum required acceleration force $[\mathrm{N}]$
j sp	$=$ inertia of ball screw per meter $\left[\mathrm{kgm}{ }^{2} / \mathrm{m}\right]^{4}$
$\mathrm{n} \max$	$=$ maximum required rotational speed $[\mathrm{rpm}]$
a	$=$ maximum required acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right)$
Vmax	$=$ maximum required linear speed $[\mathrm{m} / \mathrm{s}]$

[^23]
Drive Calculations

Belt Driven Linear Motion Systems

$$
\begin{aligned}
& \text { Feed Force Formula [} \mathrm{N} \text {] } \\
& \mathrm{F} x_{\mathrm{x}}=\mathrm{m} \times \mathrm{g} \times \mu
\end{aligned}
$$

Acceleration Force Formula [N]

$$
\mathrm{Fa}_{\mathrm{a}}=\mathrm{m} \times \mathrm{a}
$$

Power Formula [kW]

$$
\mathrm{P}=\frac{\mathrm{M}_{\mathrm{A}} \times \mathrm{n}_{\max } \times 2 \times 3,14}{60 \times 1000}
$$

Drive Moment Formulas [Nm]

$M_{A}=$ Mload + Mtrans + Mrot $+M_{\text {idle }}$

$$
\text { Mload }=\frac{F_{x} \times d_{0}}{1000 \times 2}
$$

$$
\text { Mtrans }=\frac{\mathrm{Fa} \times \mathrm{do}_{0}}{1000 \times 2}
$$

$$
M_{\text {rot }}=J_{\text {syn }} \times \frac{2 \times 3,14 \times n_{\max }}{60} \times \frac{a}{V_{\text {max }}}
$$

M idle $=$ see table for unit in question

Fx = feed force [N]
m = total mass to be moved $[\mathrm{kg}]{ }^{1}$
$\mathrm{g} \quad=$ acceleration due to gravity $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$\mu \quad=$ friction factor specific for each unit

```
a = acceleration force [N]
m}\quad= mass to be operated [kg
a = acceleration [m/\mp@subsup{\textrm{s}}{}{2}\mp@subsup{]}{}{2}
```

P	$=$ required power $[\mathrm{kW}]$
MA_{A}	$=$ required drive moment $[\mathrm{Nm}]$
$n_{\text {max }}$	$=$ maximum required rotational speed $[\mathrm{rpm}]$

MA_{A}	$=$ required drive moment $[\mathrm{Nm}]$
Mload	$=$ moment as a result of various loads $[\mathrm{N}]$
Mtrans	$=$ translational acceleration moment $[\mathrm{Nm}]$
Mrot	$=$ rotational acceleration moment $[\mathrm{Nm}]$
M idle	$=$ carriage $/$ rod idle torque $[\mathrm{Nm}]^{3}$
Fx	$=$ feed force $[\mathrm{N}]$
do	$=$ pulley diameter $[\mathrm{mm}]^{4}$
Fa	$=$ maximum required acceleration force $[\mathrm{N}]$
Jsyn	$=$ idle torque of pulleys $\left[\mathrm{kgm}^{2}\right]^{5}$
nmax	$=$ maximum required rotational speed $[\mathrm{rpm}]$
a	$=$ maximum required acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Vmax	$=$ maximum required linear speed $[\mathrm{m} / \mathrm{s}]$

${ }^{1}$ The total mass is the mass of all masses to be moved (objects to be moved, carriage(s)/rod, belt).
${ }^{2}$ In vertical applications, the mass acceleration must be added to the acceleration due to gravity $\mathrm{g}\left(9,81 \mathrm{~m} / \mathrm{s}^{2}\right)$.
${ }^{3}$ This value can be found in the carriage idle torque tables.
${ }^{4}$ This value can be found in the performance specifications tables for each linear motion system.
${ }^{5}$ This value can be found in the additional technical data tables.

Toll Free Fax (877) SERVO99

Deflection Calculations

How to calculate the deflection of the profile

Load Cases

Profile supported in both ends. Profile fixed at both sides.
2.

Profile supported in both ends. Profile fixed at one side.

Permissible Profile Deflection Formula [mm]

$$
f h=L f \times b
$$

Profile Deflection Formulas [mm]

Load Case 1.

$f_{\max }=\frac{\mathrm{m}^{\prime} 100 \times \mathrm{g} \times \mathrm{Lf}^{4}}{100 \times 384 \times \mathrm{EAl}^{4} \times \mathrm{ly}}+\frac{\left(\mathrm{mext}^{\mathrm{m}}+\mathrm{mc}\right) \times \mathrm{g} \times \mathrm{Lf}^{3}}{192 \times \mathrm{EAl}^{3} \times \mathrm{ly}}$
Load Case 2.
$f_{\max }=\frac{\mathrm{m}^{\prime} 100 \times \mathrm{g} \times \mathrm{Lf}^{4}}{100 \times 185 \times \mathrm{EAl}^{4} \times \mathrm{Iy}}+\frac{(\mathrm{mext}+\mathrm{mc}) \times \mathrm{g} \times \mathrm{Lf}^{3}}{48 \times \sqrt{5} \times \mathrm{EAI}^{3} \times \mathrm{Iy}}$
Load Case 3.
$f_{\text {max }}=\frac{\mathrm{m}^{\prime} 100 \times \mathrm{g} \times \mathrm{Lf}^{4}}{100 \times 8 \times \mathrm{EAII}^{4} \mathrm{Iy}}+\frac{\left(\mathrm{mext}^{2}+\mathrm{mc}\right) \times \mathrm{g} \times \mathrm{Lf}^{3}}{3 \times \mathrm{EAII}^{3} \mathrm{ly}}$

Conclusion Formulas

fh $>\mathrm{f}_{\text {max }}=$ deflection 0 K
$\mathrm{fh}_{\mathrm{h}}<\mathrm{f}_{\max }=$ deflection not OK, Lf must be shorter

Profile supported in one end. Profile fixed at one side.
fh $\quad=$ permissible profile deflection [mm]
Lf = length of profile being bent [mm]
b = bending factor ${ }^{1}$

$$
\begin{aligned}
\mathrm{fmax} & =\text { deflection of the profile }[\mathrm{mm}] \\
\mathrm{m}^{\prime} 100 & =\text { weight of every } 100 \mathrm{~mm} \text { of } \\
& \text { stroke }[\mathrm{kg} / \mathrm{mm}]
\end{aligned}
$$

mext = external load on carriage [kg]
$\mathrm{mc}=$ weight of carriage(s) $[\mathrm{kg}]^{2}$
g $\quad=$ acceleration due to gravity $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
EAI = elastic modulus of aluminium ($70000 \mathrm{~N} / \mathrm{mm}^{2}$)
ly = geometrical moment of inertia of the profile in Y direction [$\left.\mathrm{mm}^{4}\right]^{1}$

[^24]
Deflection Calculations

Examples of calculations of the profile deflection

Example 1

Type of linear motion system: WH8O

Load case:
Case 1 - profile supported in both ends and fixed at both sides.

Load to be moved by carriage:
mext $=150 \mathrm{~kg}$
Distance between supports:
$\mathrm{Lf}=600 \mathrm{~mm}$
Specific unit data:
$m^{\prime} 100=0,93 \mathrm{~kg}$
$\mathrm{mc}=2,75 \mathrm{~kg}$
EAl $=70000 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{l}_{\mathrm{y}}=1,93 \times 10^{6} \mathrm{~mm}^{4}$
b $=0,0005$
Calculated values:
$\mathrm{fh}=0,3 \mathrm{~mm}$
$f_{\text {max }}=0,013 \mathrm{~mm}$

Conclusion:

$\mathrm{f}_{\mathrm{h}}>\mathrm{fmax}=$ deflection OK

Example 2

Type of linear motion system: M55 (MF06B)

Load case:

Case 2 - profile supported in both ends and fixed at one side.

Load to be moved by carriage:
mext $=100 \mathrm{~kg}$
Distance between supports:
$\mathrm{Lf}=600 \mathrm{~mm}$
Specific unit data:
$\mathrm{m}^{\prime} 100=0,53 \mathrm{~kg}$
$\mathrm{mc}=1,2 \mathrm{~kg}$
$\mathrm{EAI}=70000 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{ly}=4,59 \times 10^{5} \mathrm{~mm}^{4}$
$b=0,0005$
Calculated values:
$\mathrm{fh}=0,3 \mathrm{~mm}$
$f_{\text {max }}=0,063 \mathrm{~mm}$
Conclusion:
$\mathrm{fh}_{\mathrm{h}}>\mathrm{fmax}=$ deflection OK

Example 3

Type of linear motion system:
WM80
Load case:
Case 3 - profile supported and fixed at one end.

Load to be moved by carriage:
mext $=120 \mathrm{~kg}$
Distance between supports:
$\mathrm{Lf}=400 \mathrm{~mm}$
Specific unit data:
$\mathrm{m}^{\prime} 100=1,08 \mathrm{~kg}$
$\mathrm{mc}=4,26 \mathrm{~kg}$
EAI $=70000 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{ly}=1,85 \times 10^{6} \mathrm{~mm}^{4}$
$b=0,0003$
Calculated values:
$\mathrm{fh}=0,12 \mathrm{~mm}$
$f_{\text {max }}=0,203 \mathrm{~mm}$
Conclusion:
$\mathrm{fh}>\mathrm{f}_{\mathrm{max}}=$ deflection not OK

Ordering Keys

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

WM40S, WM40D, WM60S, WM60D, WM60X, WM80S, WM80D, WM120D

Your Code								
	1	2	3	4	5	6	7	8
Example	WMM06D	020	-02545	-03715	A	Z	-0520	S1

1. Type of unit	
	WM04S = WM40S unit with single ball nut
	WM04D = WM40D unit with double ball nuts
	WM06S = WM60S unit with single ball nut
	WM06D = WM60D unit with double ball nuts
	WM06X = WM60X unit with left/right screw
	WM08S = WM80S unit with single ball nut
	WM08D = WM80D unit with double ball nuts
	WM12D = WM120D unit with double ball nuts
2. Screw lead ${ }^{1}$	
	$005=5 \mathrm{~mm}$
	$010=10 \mathrm{~mm}$
	$020=20 \mathrm{~mm}$
	$040=40 \mathrm{~mm}$
	$050=50 \mathrm{~mm}$
3. Maximum stroke (Smax)	
- \bullet •••• $=$ distance in mm	
4. Total length of unit (L tot)	
- \bullet •••• $=$ distance in mm	
5. Drive shaft configuration ${ }^{2}$	
A = single shaft without key way	
C = single shaft with key way	
$\mathrm{G}=$ double shafts, first without key way and second for encoder	
	I = double shafts, first with key way and second for encoder

6. Type of carriage ${ }^{3}$

$\mathrm{N}=$ single standard carriage
S = single short carriage
$\mathrm{L}=$ single long carriage
$Z=$ double standard carriages
$\mathrm{Y}=$ double short carriages
$M=$ double long carriages
7. Distance between double carriages - 0000 = always for single carriages
-•••• = distance in mm

8. Protection option ${ }^{4}$

S1 = wash down protection (not available for WM04 units)
${ }^{1}$ See table below for available combinations of units and ball screw leads.

	Available screw leads [mm]				
Type of unit	5	10	20	40	50
WM04S	x				
WM04D	x				
WM06S	x		x		x
WM06D	x		x		x
WM06X	x				
WM08S	x	x	x		x
WM08D	x	x	x		x
WM12D	x	x	x	x	

${ }^{2}$ See below for the definition of shafts.
Single Double

${ }^{3}$ See table below for available combinations of units and carriage types.

| | Type of unit | Available carriage types | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | N | S | L | Z | Y | M |
| WM04S | x | | | x | | |
| WM04D | | | x | | | x |
| WM06S | | x | | | x | |
| WM06D | x | | x | x | | |
| WM06X | x | x | x | | | |
| WM08S | | x | | | x | |
| WM08D | x | | x | x | | |
| WM12D | x | | x | x | | |

${ }^{4}$ Leave position blank if no additional protection is required.

FTHOMSON

Ordering Keys

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

WV60, WV80, WV120

| Your Code | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| | | | | | | | | |

1. Type of unit
WV06D $=W V 60$ unit
WV08D $=W V 80$ unit
WV12D $=W V 120$ unit
2. Ball screw lead
$005=5 \mathrm{~mm}$
$010=10 \mathrm{~mm}$
$020=20 \mathrm{~mm}$
$040=40 \mathrm{~mm}$
$050=50 \mathrm{~mm}$
3. Maximum stroke (Smax)
-•••••= distance in mm
4. Total length of unit (L tot)
-•••••= distance in mm

5. Drive shaft configuration ${ }^{2}$

A = single shaft without key way
$\mathrm{C}=$ single shaft with key way
$\mathrm{G}=$ double shafts, first without key way and second for encoder
I = double shafts, first with key way and second for encoder
6. Type of carriage
$\mathrm{N}=$ single standard carriage

7. Distance between double carriages

- 0000 = always for single carriages

8. Protection option ${ }^{3}$

S1 = wash down protection
${ }^{1}$ See table below for available combinations of units and ball screw leads.

Type of unit	Available screw leads [mm]				
	5	10	20	40	50
WV60	x		x		x
WV80	x	x	x		x
WV120	x	x	x	x	

${ }^{2}$ See below for the definition of shafts.

[^25]
Ordering Keys

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides
MLSM60D, MLSM80D

FTHOMSON

Ordering Keys

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

M55, M75, M100

Your Code							
	1	2	3	4	5	6	7
Example	MFO7	K057	C	35	S	305	$+S 1$

1. Type of unit

MF06 = M55 unit
MF07 = M75 unit
MF10 $=$ M100 unit
2. Ball screw type, lead and tolerance class ${ }^{2}$

K057 = ball nut, 5 mm , T7
K107 = ball nut, 10 mm , T7
$\mathrm{K} 129=$ ball nut, $12,7 \mathrm{~mm}$, T9
K207 = ball nut, 20 mm , T7
K257 = ball nut, 25 mm , T7

3. Type of carriages

A = single standard carriage
C = double standard carriages

4. Distance between carriages (Lc)

$00=$ for all single standard carriage units

- = distance in cm between carriages

5. Screw supports

X = no screw supports
S = single screw supports
$D=$ double screw supports
6. Ordering length (L order)
-•• = distance in cm

7. Protection option ${ }^{1}$

+S1 = S1 wash down protection
${ }^{1}$ Leave position blank if no additional protection is required.
${ }^{2}$ See table below for available combinations of units and ball screw type, lead and tolerance.

Ball screw type	Type of unit		
K057	M55	M75	M100
K107	x		x
K129		x	
K207	x	x	
K257			x

Ordering Keys

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

2HB10, 2HB2O

Your Code											
	1	2	3	4	5	6	7	8	9	10	11
Example	2 HB 10	HO	N1285	-038	N	001	A	0	A	0	0

1. Type of unit
$2 H B 10=2$ HB10 unit
$2 H B 20=2 H B 20$ unit

2. Ball screw diameter, lead and nut type

$\mathrm{GO}=16 \mathrm{~mm}, 5 \mathrm{~mm}$, preloaded (2 HB 10 only)
HO $=16 \mathrm{~mm}, 10 \mathrm{~mm}$, preloaded (2HB10 only)
LO $=25 \mathrm{~mm}, 5 \mathrm{~mm}$, preloaded ($2 \mathrm{HB2O}$ only)
MO $=25 \mathrm{~mm}, 10 \mathrm{~mm}$, preloaded (2HB20 only)
$\mathrm{NO}=25 \mathrm{~mm}, 25 \mathrm{~mm}$, preloaded (2HB20 only)

3. Ordering length (L)

$\mathrm{N} \cdot \cdots \cdot$ = distance in mm

4. Y-distance

- 038 = standard distance in mm between motor end plate to first set of mounting holes on 2 HB 10
- 043 = standard distance in mm between motor end plate to first set of mounting holes on 2HB2O
$\cdots \cdot$ = custom distance in mm between motor end plate to first set of mounting holes

5. Brake option

$N=$ no brake
B = brake
6. Motor flange ID

001 = NEMA 23
$002=$ NEMA 34
\cdots - = consult www.linearmotioneering.com for complete list of available standard motor flanges

7. Ball guide rail coating option

A = standard
D = duralloy
8. Ball guide carriage coating option

0 = standard
1 = duralloy

9. Profile cover option

A = none
$B=$ bellows (bellows will reduce stroke length app. 28\%)
$C=$ shrouds

10. Hardware option

0 = alloy plated
1 = stainless steel

11. Home and end of stroke sensor option

$0=$ no sensors
1 = home sensor, NPN type
2 = end of stroke sensors, NPN type
3 = home and end of stroke sensors, NPN type
4 = home sensor, PNP type
5 = end of stroke sensors, PNP type
$6=$ home and end of stroke sensors, PNP type

Ordering Keys

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

2RB12, 2RB16

Your Code

Ordering Keys

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

MS25, MS33

Your Code											
	1	2	3	4	5	6	7	8	9	10	11
Example	MS25	LC	N0300	-056	N	505	A	0	A	0	0

1. Type of unit
MS25 $=M S 25$ unit
$M S 33=M S 33$ unit

2. Lead screw diameter, lead and nut type

LA $=0,25$ inch, 0,025 in, preloaded
$\mathrm{LB}=0,25$ inch, $0,050 \mathrm{in}$, preloaded
$L C=0,25$ inch, 0,062 in, preloaded
$L D=0,25$ inch, 0,200 in, preloaded
$L E=0,25$ inch, 0,250 in, preloaded
$\mathrm{LF}=0,25$ inch, 0,500 in, preloaded
LG $=0,25$ inch, 1,000 in, preloaded
$\mathrm{LH}=0,25$ inch, $1,5 \mathrm{~mm}$, preloaded
$\mathrm{LI}=0,25$ inch, $2,0 \mathrm{~mm}$, preloaded
$L J=0,25$ inch, $3,0 \mathrm{~mm}$, preloaded

3. Ordering length (L)

$\mathrm{N} \cdot \bullet \cdot$ = distance in mm

4. Y-distance

- 056 = standard distance in mm between motor end plate to first set of mounting holes on MS25
- 075 = standard distance in mm between motor end plate to first set of mounting holes on MS33
- ••• custom distance in mm between motor end plate to first set of mounting holes

5. Brake option

$N=$ no brake
B = brake

6. Motor flange ID ${ }^{1}$

$505=$ NEMA 17
$001=$ NEMA 23
-• = consult www.linearmotioneering.com for complete list of available standard motor flanges

7. Linear guides shafting option

A = 60 case (1566)
$B=$ stainless steel (440C)
C = chrome plated
$\mathrm{E}=$ armoloy

8. Bearing type option

0 = standard
1 = corrosion resistant

9. Profile cover option

$A=$ none
$B=$ bellows (bellows will reduce stroke length app. 28\%)

10. Hardware option

0 = alloy plated
1 = stainless steel

11. Home and end of stroke limit switch option

7 = home position limit switch
$8=$ end of stroke limit switches

تTHOMSON

Ordering Keys

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

MS46L, MS46B

Ordering Keys

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

2DB08, 2DB12, 2DB16

Your Code											
	1	2	3	4	5	6	7	8	9	10	11
Example	2DB12	F0	N0250	-300	N	002	A	0	A	0	0

1. Type of unit
$2 D B 08=2 D B 08$ unit
$2 D B 12=2 D B 12$ unit
$2 D B 16=2 D B 16$ unit
2. Screw type, diameter, lead and nut type

A0 = leadscrew, 0.375 in, 0.100 in, non-preloaded (2DB08 only)
$\mathrm{BO}=$ leadscrew, $0.375 \mathrm{in}, 0.250 \mathrm{in}$, non-preloaded (2DB08 only)
CO = leadscrew, $0.375 \mathrm{in}, 0.500 \mathrm{in}$, non-preloaded (2DB08 only)
D0 = leadscrew, 0.375 in, 1.000 in, non-preloaded (2DB08 only)

FO = ballscrew, 0.631 in, 0.200 in, non-preloaded (2DB12 only)
$\mathrm{V} 0=$ ballscrew, 0.631 in, 0.200 in, preloaded (2DB12 only)
$\mathrm{OJ}=$ ballscrew, $0.500 \mathrm{in}, 0.500 \mathrm{in}$, preloaded (2DB12 only)

GO = ballscrew, 0.750 in, 0.200 in, non-preloaded (2DB16 only)
$\mathrm{W} 0=$ ballscrew, $0.750 \mathrm{in}, 0.200 \mathrm{in}$, preloaded (2DB16 only)
RJ = ballscrew, 0.750 in, 0.500 in, preloaded (2DB16 only)
$\mathrm{LJ}=$ ballscrew, $0.631 \mathrm{in}, 1.0$ in, preloaded (2DB16 only)
D0 = ballscrew, $20 \mathrm{~mm}, 5 \mathrm{~mm}$, preloaded (2DB16 only)

3. Ordering length (L)

$\mathrm{N} \cdot \bullet \cdot \bullet=$ distance in inch (e.g. $0250=25$ inch)

4. \mathbf{Y}-distance

- 200 = standard distance in inch between motor end plate to first set of mounting holes for 2DB08 (e.g. $200=2$ in)
$-300=$ standard distance in inch between motor end plate to first set of mounting holes for 2 DB 12 and 2 DB 16 (e.g. $300=3$ in)
-••• = custom distance in inch between motor end plate to first set of mounting holes

5. Brake option

$N=$ no brake
B = brake

6. Motor flange ID

$001=$ NEMA 23
002 = NEMA 34
-• = consult www.linearmotioneering.com for complete list of available standard motor flanges

7. Ball guide shaft coating option

A = standard, 60 Case
$B=$ stainless steel (440C)
C = chrome plated
$\mathrm{E}=$ armoloy

8. Bearing option

0 = standard
1 = corrosion resistance

9. Profile cover option

A = none
$B=$ bellows (bellows will reduce stroke length app. 28\%)

10. Hardware option

0 = alloy plated
1 = stainless steel

11. Home and end of stroke sensor option

0 = no sensors
1 = home sensor, NPN type
2 = end of stroke sensors, NPN type
3 = home and end of stroke sensors, NPN type
4 = home sensor, PNP type
5 = end of stroke sensors, PNP type
6 = home and end of stroke sensors, PNP type

تTHOMSON

Ordering Keys

Linear Motion Systems with Ball Screw Drive and Slide Guides

M55, M75, M100

Your Code							
	1	2	3	4	5	6	7
Example	MGO7	K057	C	35	S	305	+ S1

1. Type of unit

MG06 = M55 unit
MG07 = M75 unit
MG10 $=$ M100 unit
2. Ball screw type, lead and tolerance class ${ }^{2}$

K057 = ball nut, 5 mm , T7
K107 = ball nut, 10 mm , T7
$\mathrm{K} 129=$ ball nut, $12,7 \mathrm{~mm}$, T9
K207 = ball nut, 20 mm , T7
K257 = ball nut, 25 mm , T7

3. Type of carriages

A = single standard carriage
C = double standard carriages

4. Distance between carriages (Lc)

$00=$ for all single standard carriage units

- = distance in cm between carriages

5. Screw supports

X = no screw supports
S = single screw supports
$D=$ double screw supports
6. Ordering length (L order)
-•• = distance in cm

7. Protection option ${ }^{1}$

+S1 = S1 wash down protection
${ }^{1}$ Leave position blank if no additional protection is required.
${ }^{2}$ See table below for available combinations of units and ball screw type, lead and tolerance.

Ball screw type	Type of unit		
K057	M55	M75	M100
K107	x		x
K129		x	
K207	x	x	
K257			x

ELECTROMATE

Ordering Keys

Linear Motion Systems with Belt Drive and Ball Guides

WH40

Your Code						
	1	2	3	4	5	6
Example	WHO4Z100	-01400	-01755	H	L	-0400

1. Type of unit

WH04Z100 = WH40 unit

2. Maximum stroke (Smax)

-••••• = distance in mm

3. Total length of unit (L tot)

-••••• = distance in mm

4. Drive shaft configuration ${ }^{1}$

$A=$ shaft on left side without key way
$B=$ shaft on right side without key way
C = shaft on left side with key way
$D=$ shaft on right side with key way
$\mathrm{E}=$ shaft on left side without key way and shaft on right side with key way
F = shaft on left side with key way and shaft on right side without key way
$\mathrm{G}=$ shaft on left side without key way and shaft on right side for encoder
H = shaft on left side for encoder and shaft on right side without key way
I = shaft on left side with key way and shaft on right side for encoder
$J=$ shaft on left side for encoder and shaft on right side with key way
$\mathrm{L}=$ shaft on both sides without key way
$\mathrm{M}=$ shaft on both sides with key way
W = hollow shaft on both sides with clamping unit

5. Carriage configuration

$\mathrm{N}=$ single standard carriage
$\mathrm{L}=$ single long carriage
$Z=$ double standard carriages

6. Distance between double carriages

- 0000 = always for single carriages
-•••• = distance in mm
${ }^{1}$ See below for the definition of shafts.

Ordering Keys

Linear Motion Systems with Belt Drive and Ball Guides

WM60Z, WM80Z

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Your Code} \\
\hline \& 1 \& 2 \& 3 \& 4 \& \multicolumn{3}{|l|}{5} \& \multicolumn{3}{|c|}{6} \\
\hline Example \& WM082170 \& -02545 \& -03715 \& \multicolumn{2}{|l|}{D} \& \& \& \multicolumn{3}{|c|}{-0000} \\
\hline \begin{tabular}{l}
1. Type of WM06Z12 WM08Z17 \\
2. Maximu \\
3. Total le \\
-••••• =
\end{tabular} \& WM60Z unit WM80Z unit troke (Smax) nce in mm of unit (L tot) ance in mm \& \& \multicolumn{2}{|l|}{\(H\) = shaft on left side for encoder and shaft on right side without key way I = shaft on left side with key way and shaft on right side for encoder \(J=\) shaft on left side for encoder and shaft on right side with key way \(\mathrm{L}=\) shaft on both sides without key way \(\mathrm{M}=\) shaft on both sides with key way \(\mathrm{V}=\) hollow shaft on both sides for Micron DT/DTR planetary gear option} \& \multicolumn{6}{|l|}{\begin{tabular}{l}
\({ }^{1}\) See below for the definition of shafts. \\
\({ }^{2}\) See table below for available combinations of units and carriage types.
\end{tabular}} \\
\hline \begin{tabular}{l}
4. Drive sh \\
A = shaft on \\
B = shaft \\
C = shaft on \\
D = shaft \\
E = shaft o \\
shaft \\
F = shaft o \\
shaft \\
G = shaft \\
shaft
\end{tabular} \& \begin{tabular}{l}
configuration \({ }^{1}\) \\
ft side without key ight side without ke ft side with key wa ight side with key w ft side without key ight side with key w t side with key way ight side without ke ft side without key ight side for encode
\end{tabular} \& \& \begin{tabular}{l}
onfiguration \\
andard carri \\
ort carriage \\
g carriage \\
andard carri \\
ort carriage \\
etween dou \\
ys for single \\
ance in mm
\end{tabular} \& \& \begin{tabular}{l}
WM06Z \\
WM08Z
\end{tabular} \& \begin{tabular}{l}
N \\
\\
\hline
\end{tabular} \& \begin{tabular}{l}
S \\
\hline x \\
x
\end{tabular} \& L

x \& Z

x \& | Y |
| :--- |
| X |
| X |

\hline
\end{tabular}

Ordering Keys

Linear Motion Systems with Belt Drive and Ball Guides

M55, M75, M100

Your Code						
	1	2	3	4	5	
Example	MFO6B105	A	00	X	450	$+S 1$

1. Type of unit

MF06B105 = M55 unit
MF07B130 = M75 unit
MF10B176 = M100 unit

2. Type of carriages

A = single standard carriage
$\mathrm{C}=$ double standard carriages
3. Distance between carriages (Lc)

00 = for all single standard carriage units
-• = distance in cm between carriages

4. Drive shaft configuration

$R=$ shaft on the side as shown in picture
Q = shaft on the side as shown in picture
$\mathrm{X}=$ shaft on both sides
5. Ordering length (L order)
$\bullet \bullet=$ distance in cm

6. Protection option ${ }^{1}$

+S1 = S1 wash down protection
${ }^{1}$ Leave blank if no protection option required.

Ordering Keys

Linear Motion Systems with Belt Drive and Ball Guides

MLSM80Z

Your Code				
	1	2	3	5 6
Example	MLSM087200	-05000	-05570	N -0000
1. Type of MLSM08Z 2. Maximu 3. Total len \qquad	= MLSM80 unit troke (Smax) ance in mm of unit (L tot) ance in mm	4. Drive shaft configuration ${ }^{1}$ A = shaft on left side without key way $B=$ shaft on right side without key way C = shaft on left side with key way $\mathrm{D}=$ shaft on right side with key way E = shaft on left side without key way and shaft on right side with key way $\mathrm{F}=$ shaft on left side with key way and shaft on right side without key way $\mathrm{G}=$ shaft on left side without key way and shaft on right side for encoder H = shaft on left side for encoder and shaft on right side without key way I = shaft on left side with key way and shaft on right side for encoder $J=$ shaft on left side for encoder and shaft on right side with key way $\mathrm{L}=$ shaft on both sides without key way $\mathrm{M}=$ shaft on both sides with key way		5. Carriage configuration $\mathrm{N}=$ single standard carriage $\mathrm{L}=$ single long carriage Z = double standard carriages 6. Distance between double carriages - 0000 = always for single carriages -•••• = distance in mm ${ }^{1}$ See below for the definition of shafts.

ELECTROMATE

Toll Free Fax (877) SERVO99

Ordering Keys

Linear Motion Systems with Belt Drive and Slide Guides

M50				
Your Code				
	1	2	3	4
Example	MG05B130	A00	R	560
1. Type of unit MG05B130 = M50 unit 2. Type of carriage A00 = single standard carriage			3. Drive shaft configuration $R=$ shaft on the side as shown in picture Q = shaft on the side as shown in picture X $=$ shaft on both sides	

M55, M75, M100

Ordering Keys

Linear Motion Systems with Belt Drive and Wheel Guides

WH5O, WH80, WH120

| Your Code | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | | | | | |
| | | | | | | | |

1. Type of unit

WH05Z120 = WH50 unit
WH08Z200 = WH80 unit
WH12Z260 = WH120 unit
2. Maximum stroke (Smax)
-••••• = distance in mm
3. Total length of unit (L tot)
-•••••• distance in mm

4. Drive shaft configuration ${ }^{1}$

A = shaft on left side without key way
$B=$ shaft on right side without key way
C = shaft on left side with key way
$D=$ shaft on right side with key way
$E=$ shaft on left side without key way and shaft on right side with key way
$F=$ shaft on left side with key way and
shaft on right side without key way
$\mathrm{G}=$ shaft on left side without key way and
shaft on right side for encoder
H = shaft on left side for encoder and
shaft on right side without key way
I = shaft on left side with key way and
shaft on right side for encoder
$J=$ shaft on left side for encoder and
shaft on right side with key way
$\mathrm{K}=$ hollow shaft on both sides without
clamping unit
$\mathrm{L}=$ shaft on both sides without key way
$M=$ shaft on both sides with key way
V = hollow shaft on both sides for Micron
DT/DTR planetary gear option
W = hollow shaft on both sides with clamping unit

7. Protection option ${ }^{2}$

S1 = wash down protection

5. Carriage configuration

$\mathrm{N}=$ single standard carriage
$\mathrm{L}=$ single long carriage
$Z=$ double standard carriages
6. Distance between double carriages

- $0000=$ always for single carriages
-•••• = distance in mm
${ }^{1}$ See below for the definition of shafts.

${ }^{2}$ Leave position blank if no additional protection is required.

Ordering Keys

Linear Motion Systems with Belt Drive and Wheel Guides

MLSH60Z

Your Code						
	1	2	3	4	5	6
Example	MLSHOGZ135	-04500	-05580	D	Z	-0600

1. Type of unit

MLSH06Z135 = MLSH60 unit

2. Maximum stroke (Smax)

-••••• distance in mm
3. Total length of unit (L tot)
-••••• = distance in mm

4. Drive shaft configuration ${ }^{1}$

$A=$ shaft on left side without key way
$B=$ shaft on right side without key way
C = shaft on left side with key way
$D=$ shaft on right side with key way
E = shaft on left side without key way and shaft on right side with key way
$F=$ shaft on left side with key way and
shaft on right side without key way
$\mathrm{G}=$ shaft on left side without key way and shaft on right side for encoder
H = shaft on left side for encoder and shaft on right side without key way
I = shaft on left side with key way and shaft on right side for encoder
$J=$ shaft on left side for encoder and shaft on right side with key way
$\mathrm{L}=$ shaft on both sides without key way
$\mathrm{M}=$ shaft on both sides with key way

5. Carriage configuration

$\mathrm{N}=$ single standard carriage
L = single long carriage
$Z=$ double standard carriages

6. Distance between double carriages

- 0000 = always for single carriages
-•••• = distance in mm
${ }^{1}$ See below for the definition of shafts.

Ordering Keys

Linear Lifting Systems

WHZ50, WHZ80

Note! for ordering of options type EN, ES, KRG, RT, ADG and MGK, see accessory index on page 135 .

Z2, Z3

Your Code

	1	2	3	4
Example	MGZ3K	25259	-250	450

1. Type of unit
$M G Z 2 K=Z 2$ unit
$M G Z 3 K=Z 3$ unit
2. Ball screw diameter, lead and tolerance class
$25109=25 \mathrm{~mm}, 10 \mathrm{~mm}$, T9
$25259=25 \mathrm{~mm}, 25 \mathrm{~mm}$, T9
$32207=32 \mathrm{~mm}, 20 \mathrm{~mm}$, T7

3. Minimum retracted length (L min)

-•••= distance in cm
4. Maximum extended length (L max)
-••= distance in cm

ELECTROMATE

Ordering Keys

Linear Rod Units

WZ60, WZ80

Your Code						
	1	2				
Example	WZO6S	20	-00350	-00780	6	C

1. Type of unit
WZ06 $=W Z 60$ unit
WZ08 $=W Z 80$ unit
2. Ball screw lead

$05=5 \mathrm{~mm}$
$10=10 \mathrm{~mm}$
$20=20 \mathrm{~mm}$
$50=50 \mathrm{~mm}$

3. Maximum stroke (Smax)

-••••• = distance in mm
4. Total length of unit (L tot)
-•••• = distance in mm

5. Drive shaft configuration

A = shaft without key way
$C=$ shaft with key way

6. Extension tube configuration

$\mathrm{N}=$ standard
${ }^{1}$ See table below for available combinations of units and screw leads.

Type of unit	Available screw leads [mm]			
	5	10	20	50
WZO6	x		x	x
WZ08	x	x	x	x

Ordering Keys

Non Driven Linear Motion Systems

WH4ON, WH50N, WH8ON, WH120N

Your Code

	1	2	3	4	5	6
Example	WHO4N000	-04500	-04640	\mathbb{K}	\mathbb{N}	-0000

1. Type of unit

WH04N000 = WH4ON unit WH05N000 = WH5ON unit WH08N000 = WH8ON unit WH12NO00 = WH120N unit

2. Maximum stroke (Smax)

-••••• = distance in mm
3. Total length of unit (L tot)
-••••• = distance in mm
4. Drive shaft configuration ${ }^{1}$
$K=$ no shaft

5. Carriage configuration

$\mathrm{N}=$ single standard carriage
$\mathrm{L}=$ single long carriage
Z = double standard carriages
6. Distance between double carriages

- 0000 = always for single carriages
-•••• = distance in mm

WM40N, WM60N, WM80N, WM120N

Your Code						
	1	2				
Example	WMOBNOOO	-07010	-07210	\mathbb{K}	\mathbf{N}	

1. Type of unit
WM04N000 = WM40N unit
WM06N000 $=$ WM60N unit
WM08N000 = WM80N unit
WM12N000 = WM120N unit
2. Maximum stroke (Smax)
$-\bullet . C$ = distance in mm
3. Total length of unit (L tot) -••••• distance in mm

4. Drive shaft configuration

K = no shaft
5. Type of carriage ${ }^{1}$
$N=$ single standard carriage
$\mathrm{S}=$ single short carriage
$\mathrm{L}=$ single long carriage
Z = double standard carriages
$\mathrm{Y}=$ double short carriages
6. Distance between double carriages

- 0000 = always for single carriages
-•••• = distance in mm
${ }^{1}$ See table below for available combinations of units and carriage types.

Type of unit	Available carriage types				
	N	S	L	Z	Y
WM04N000	x		x	x	
WM06N000	x	x	x	x	x
WM08N000	x	x	x	x	x
WM12N000	x		x	x	

Ordering Keys

Non Driven Linear Motion Systems

M75N, M100N

Terminology

Basic Linear Motion System Terminology

Screw Driven Unit

Belt Driven Unit

[^26]
Glossary

A - Belt D

Acceleration

Acceleration is a measure of the rate of speed change going from standstill (or a lower speed) to a higher speed. Please contact customer service if your application is critical to which acceleration rate is acceptable or needed.

Accuracy

There are several types of accuracy and many different factors that will affect the overall accuracy of a system. Also see "Repeatability", "Positioning Accuracy", "Resolution", "Lead Accuracy" and "Backlash".

Backlash

Backlash is the stack up of tolerances (play) within the leadscrew/belt transmission assembly and gearing which creates a dead band when changing directions. The result is that the motor can rotate some before any motion can be seen on the carriage when reversing the direction of the motor rotation. The backlash varies depending of the liner motion system model.

Ball Guides

A ball guide consists of a ball rail and a ball bushing. The ball rail is made of hardened steel and runs along the inside of the profile. The ball bushing is attached to the carriage of the unit and contains balls that roll against the rail. The balls in the bushing can be recirculating or have fixed ball positions depending on the type of ball guide. The recirculating type has a longer life and better load capability while the fixed type typically is much smaller. Thomson uses three major types of ball guides in its linear motion systems. Either the compact single rail type with recirculating ball bushing (A), the stronger double rail type also with recirculating ball bushings (B) or the fixed ball position ball bushings type (not shown) which require very little space and are used in the smallest units. Ball guides offer high accuracy, high loads and medium speed.

A ball screw is made up of a rotating screw and a moving ball nut. The ball nut is attached to the carriage of the unit. It does not have a normal thread, instead balls circulate inside the nut making it work as an efficient ball bearing that travels along the screw. Ball screws come in a large variety of leads, diameters and tolerance classes. The tolerance class ($\mathrm{T} 3, \mathrm{~T} 5, \mathrm{~T} 7$ or T 9) indicates the lead tolerance of the screw. The lower the number, the higher the tolerance. High load capability and high accuracy are typical features of ball screw driven units.

Bearing Housing

Screw driven units has two bearing housings, front and rear. The front bearing housing has a drive shaft while the rear has none. Sometimes however the rear housing can have an optional output shaft which is used to connect to an encoder.

Bell House Flange

A bell house flange is used when a motor should be connected directly to the drive shaft of a linear motion system, i.e when it is direct driven. The bell house has the bolt pattern of the motor flange in one end and the bolt pattern of the drive shaft flange in the other while the two shafts are joined by a coupling. Also see "Direct Drive".

Belt Drive

A belt drive consists of a toothed belt which is attached to the carriage of the unit. The belt runs between two pulleys positioned at either end of the profile. One pulley is attached to the motor via the drive shaft in the drive station while the other is mounted in a tension station. The belts are made of plastic reinforced with steel cords. High speeds, long stroke, low noise and low overall weight are typical features of belt driven units

Glossary

Belt G - C

Belt Gear

A belt gear consists of a timing belt that runs between two pulley wheels of different diameters. The difference between the diameters determines the gear ratio. Belt gears are quiet, have medium accuracy and require no maintenance but are susceptible to belt breakage under overload conditions.

Brake

None of the units are equipped with a brake or are self-locking which means that a vertical unit will drop the carriage/load if no external brake (such as a brake in the motor, etc.) is applied to the drive shaft.. In the case of belt driven units care must be taken as the carriage/load will drop immediately in the case of a belt breakage. This is particularly important in vertical applications. You also may want to incoorporate a brake in to the system to ensure fast and secure stops at an emergency stop or a power failure. In this case the brake should be of the failsafe type, i.e. a brake that is engaged when power is off and lifted when it is on.

Carriage

The carriage is the moving member which travel along the profile of the unit to which the load is attached. Some units can have multiple carriages in order to distribute the weight of the load over a greater distance, this will however reduce the available stroke for a given profile length. There are also units having the option of short or long carriage. The short can carry less weight than a standard one but has a slightly longer stroke for a given profile length while the longer works the other way around. It is possible to fix the carriage(s) to the foundation and let the profile act as the moving member if so desired. This is often the case in vertical applications where you let the profile lift and lower the load.

CE Certificate

Linear motion systems do not need and do therefore not have any CE certification. All Thomson linear motion systems are however designed in accordance with the CE regulations and comes with a manufacturers declaration to prove this. Once the linear motion system is used or made in to a machine it is the responsability of the end customer to make sure the entire machine that the linear motion system is a part of is in accordance with the applicable CE regulations, produce the documents that proves this and apply a CE mark to the machine.

Cover Band

Cover bands are used on some units to protect them from the ingress of foreign objects through the opening in the profile where the carriage runs and can be made of plastic (A) or stainless steel (B). In the case of plastic the cover band seals the profile by snapping into small grooves running along the carriage opening. In the case of stainless steel the cover band seal the profile magnetically using magnet strips mounted on each side of the carriage opening. Some units also have a self-adjusting
cover band tensioning mechanism that eleminates any slack in the cover band that can occur from temperaure changes, thus improving the sealing degree and the expected life of the cover band.

Critical Speed

All ball screws have a critical speed where the screw starts to vibrate and eventually bend or warp the screw. The excact limit is a function of how long the screw is and the speed. For some units this means that the allowed maximum speed found in the performance specifications can be higher than the critical speed when the stroke exceeds a certain distance. In this case, either the speed must be reduced to the critical speed, the amount of stroke must be reduced, or you must use the screw support option if the unit in question allows this. Otherwise you must select another unit that can manage the speed at that stroke. The critical speed limits can be found in the "Critical Speed" diagrams on the product pages of the units that this concern.

Customization

Despite the large range of linear motion systems offered by Thomson you may not find the exact unit to suit your application. But whatever your need is, Thomson is ready to help you to customize a unit according to your requirements. Please contact customer service for more information.

Cycle

One cycle is when the carriage has travelled back and forth over the complete stroke of the unit one time.

Glossary

D - E

Deceleration

Deceleration is a measure of the rate of speed change going from a higher speed to a lower speed (or standstill). Please contact customer service if your application is critical to which deceleration rate is acceptable or needed.

Definition of Forces

The designations of the forces that acts on the unit are defined on the product page of each unit in the "Definition of Forcs" drawing (see example below). Please always use the same definitions whenever communicating with Thomson.

Deflection of the Profile

Some units require support along the whole profile whilst some are self supporting over a specified span. Further details can be found on the product data pages. The recommended support intervals should be followed to minimise deflection of the unit. The maximum distance between the support points is shown on the product data pages. The deflection of the unit can also be calculated using the information in the "Additional data and calculations" section.

Direct Drive

Direct drive means that there is no gearing between the motor and the drive shaft of the linear motion system. Instead the motor is connected to the unit directly via a coupling and an bell house adapter flange. Also see "Bell House Flange".

Double Ball Nuts

Using double ball nuts will increase the repeatability of the unit. The ball nuts are installed so that they are pre-tensioned against each other eleminating the play between the nuts and the screw. A double nut unit will have a slightly shorter stroke for a given overall length.

Double Carriages

Double carriage units have two carriages which gives them higher load capabilites than single carriage units. When ordering a double carriage unit the distance between the two carriages needs to be defined. This distance is called LA or Lc depending on the model.

Drive Shaft

The drive shaft is the is the shaft to which the motor is connected, either directly, via a bell house flange or via a gear box. There are many sizes and types of drive shafts, such as shafts with or without key way or hollow shafts, depending on the type and size of the unit. Belt driven units can often have two drive shafts (same or different type and size), one on each side of the drive station, while screw driven only have on pointing out of the end of the unit. Customized drive shafts are possible, please contact customer service for more information.

Drive Station

The drive station is the mechanical assembly in one of the ends of a belt driven unit where the drive shaft is situated.

Duty Cycle

All units are designed for a 100% duty cycle. However, where the unit runs at extreme load, speed, acceleration and temperature or for long operating periods the expected life time may be reduced.

Encoder Feedback

Encoders provide a digital output signal in the form of a square shaped pulse train that can be used to determine the position of the extension tube. The encoder signal in a servo motor system is connected to the motion control so that it can control the servo drive and hence close the position feedback loop.

End of Stroke Limit Switches

If a unit runs at speed to the ends of its stroke there is a risk of damage. Damage can be prevented by using end of stroke limit switches to detect and engage a brake and/or cut power to the motor when the unit nears the end of the unit. You must ensure that there is sufficient distance between the end of stroke limit switch and the end of the unit, to allow the carriage to come to a complete stop before colliding with the end. The required stopping distance depends on the speed and the load and will have to be calculated for each application. The stopping distance must be taken into account when defining the necessary stroke.

Glossary

G - M

Guides

Guides are in essence a form of linear bearings on which the carriage(s) travel. Thomson uses three main types of guides that all have different characteristics and which to choose depends on the demands of the application. Alos see "Ball Guides", "Slide Guides" and "Wheel Guides".

Idle Torque

Idle torque is the torque needed to move the carriage with no load in it by rotating the drive shaft. The idle torque will vary with the input speed and the idle torque tables on the product pages gives a value for some speeds. The value given in the table is for a unit having a single carriage of standar length. If you need the exact value for another speed, multiple carriages or short/long carriages , please contact our customer service.

Inertia

Inertia is the property of an object to resist speed changes and is dependant on the shape and the mass of the object. The inertia is important when sizing and selecting and also when tuning a servo system to optimum performance. Consult customer service for more information.

Input Shaft

The input shaft is the shaft to wich the power source (motor) is connected to on a gear box. Primary shaft is another term for this. Sometimes the drive shaft on a linear unit also is refered to as the input shaft.

Input Speed

Input speed is the rotational speed that the drive shaft/input shaft of a linear motion system or a gear box is subjected to.

Installation and Service Manual

Each linear motions system has an installation and service manual to answer typical questions about mounting and servicing the unit.

Lead Accuracy

Lead accuracy is a measure of how accurate the lead of a ball screw is. For a ball screw with a lead of 25 mm , the screw should in theory move the nut 25 mm per each revolution. In reallity there will be a deviation between the expected traveling distance and what is actually achieved. The deviation is typically for a ball screw $0,05 \mathrm{~mm}$ per 300 mm of stroke. Contact customer service for more information.

Left/right Moving Carriages

Units with left/right moving carriages have two carriages moving in opposite directions when the drive shaft is rotated. This type of unit has a ball screw where half of the screw has a left hand thread and the other half a right hand thread.

Lifetime Expectancy

When determining the lifetime for a linear motion system it is necessary to evaluate all forces and moments that are acting on the unit. The data and formulas given in this catalogue serve as a basis for this. For a more detailed lifetime calculation please use our sizing and selection software. Please contact us for further guidance.

Linear Lifting System

A linear lifting system is in essence a linear motion system specially designed for vertical lifting applications. Some units can be used in horizontal applications as well under certain criterias. Please contact us if you plan to mount a lifting unit in any other position than vertically with the load carrying plate pointing down.

Linear Motion System

A linear motion system is a mechanical assembly that translates the rotating motion of a motor to the linear motion of a carriage that travel along a load supporting beam/profile. Other names for linear motion systems are linear units, linear drive units and rodless actuators among others.

Load Rating

There are many types of load ratings that all needs to be considered. Normally when you speak about the load you refer to the load that the carriage will move; which is the dynamic load. But there may also be static, side, moment and forces from acceleration, deceleration, gravity and friction that are all equally important. For some units the load and load torque values are given for both the complete unit and the guiding system. The values for the complete unit are the values under which the unit can operate. The values for the guiding system should only be used when comparing different units and do not describe the actual performance of the complete unit.

Maintenance

Most units require lubrication. General lubrication requirements can be found in the general specifications table on the product data pages. The lubrication intervals, grease qualities and specific lubrication instructions can be found in the installation and service manual of each unit. No other regular maintenance is needed except for normal cleaning and inspection. Units with a cover band may also require irregular cover band replacement due to wear. The belt in belt driven units should not require re-tensioning under normal operating conditions.

Manufacturers Declaration

All Thomson linear motion systems comes with a manufacturers declaration to prove that it is built according to the CE regulations.

Mounting

Most units can be mounted in any direction. Any restrictions on mounting positions are shown on the product presentation pages at the beginning of each product category chapter. Even where units may be mounted in any direction there are some considerations. None of the units are selflocking which means that a vertical unit will drop the carriage/load if no

Glossary

N - Sc

external brake (such as a brake in the motor, etc.) is applied to the drive shaft of the unit. In the case of belt driven units care must be taken as the carriage/load will drop immediately in the case of a belt breakage. This is particularly important in vertical applications. All ball screw driven units are equipped with a safety nut to prevent the carriage/load being released in case of ball breakage.

Non Driven Linear Motion Systems

A non driven linear motion system has no drive shaft or any type of transmission. In reality a non driven linear motion system is a guide that has the same look and outer dimensions as the driven version. Normally a non driven unit is used together with a parallel working driven unit that are mechanically linked where the non driven unit help to share to load with the driven one.

Non Guided Linear Motion Systems

A non guided linear motion system has a drive shaft and a ball screw but no guides. In reality a non guided linear motion system is a enclosed ball screw assembly with a carriage that has the same look and outer dimensions as the driven version. Using a non guided unit requires some kind of external guide to which the carriage can be attached.

Operation and Storage Temperature

Operational temperature limits can be found in the performance tables on the product data pages. Units can be stored or transported within the same temperature range. Please contact us if the unit will be exposed to higher/lower temperatures than recommended during storage or transportation.

Output Shaft

The output shaft is the shaft on a gear box that is connected to object being driven by the gear box. Another term for output shaft is secondary shaft.

Packages and Multi Axis Kits

Thomson can offer complete pre-defined packages (linear motion system, gear and servo motor assembled and shipped with servo drive and cables) as well as mounting kits for the creation of two and three axis systems Please contact us for further information.

Positioning Accuracy

Positioning accuracy is the error between the the expected and actual position and is the sum of all factors that will reduce the accuracy (i.e. repeatability, backlash, resolution, screw/belt accuracy, and the accuracy of the motor, drive and motion control system). Some of these factors, such as backlash and lead accuracy, can sometimes be compensated for in the software of the motion control system being used. Also see "Accuracy".

Position Feedback

The position of the carriage/rod/lifting profile can be obtained in many ways. The most common way is to equip the unit with an encoder or to use a motor which has a built in feed back device (encoder, resolver, etc.). To many units there are encoders or/and encoder mounting kits available. See the accessory chapter.

Repeatability

Repeatability is the ability for a positioning system to return to a location when approaching from the same distance, at the same speed and deceleration rate. Some of the factors that affect the repatability are the angular repeatability of the motor, drive and motion control system, system friction and changes in load, speed and deceleration.

Resolution

Resolution is the smallest move increment that the system can perform. Some of the factors that affect the resolution are the angular repeatability of the motor, drive and motion control system, system friction, the drive train reduction, the lead/type of the ball screw/belt and changes in load, speed and deceleration.

Resolver

A resolver is basically a type of rotary electrical transformer used for measuring degrees of rotation and are commonly used on AC servo motors as a feedback device to control the commutation of the motor windings. The resolver is mounted to the end of motor shaft and when the motor rotates the resolver will transmit the position and direction of the rotor to the servo drive which then can control the motor. Most servo drives for $A C$ servo motors on the market today can convert the resolver signal in to a pulse train (encoder signal simulation) which can be used by a motion control to determine and control the position of the motor. Also see "Encoder Feedback".

RoHS Compliance

The RoHS directive stands for "the restriction of the use of certain hazardous substances in electrical and electronic equipment". This directive bans the placing on the EU market of new electrical and electronic equipment containing more than agreed levels of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyl (PBB) and polybrominated diphenyl ether (PBDE) flame retardants. All linear motion systems and accessories sold in the EU are RoHS compliant.

Screw Supports

Screw supports allow screw driven units to travel at high speed even when stroke becomes longer. The supports reduce the unsupported length of the screw, that otherwise would be subjected to vibrations. Screw supports come in single (one screw support on each side of the carriage) or double (two supports on each side) versions. Screw support units will have a slightly shorter stroke for a given overall length.

Glossary

Si - W

Single Carriage

Single carriage units have one carriage. Some linear motion system models also have the option of long or short single carriage. The long carriage handle higher loads but will have a longer overall length for a given stroke.

Sizing and Selection

This catalog can give you an overview of what Thomson can offer you and an indication of which products that may suit your application. But in order to get the best solution it is neccessary to know your specific application and to carry out detailed sizing and selection calculations. Please contact customer service for further help.

Slide Guides

A slide guide consist of a guide attached to the inside of the profile and a slide bushing attached to the carriage. The guide can be made of different materials (e.g. polished hardened steel, anodized aluminium) while the bushing is made of a polymer material. There are two types of bushings, fixed and prism. Prism bushings can move in relation to the guide which results in longer life and higher load capabilities. Slide bushings are silent, simple, reliable and robust and can be used in dirty and dusty environments. They are also resistant to shock loads, have a long life expectancy and require little or no maintenance.

Stroke

The theoretical maximum stroke ($S \max$) is the length that the carriage can travel from one end of the unit to the other. However, using the maximum stroke means that the carriage will collide with the ends of the profile. The practical stroke is therefore shorter. We recommend that you specify a unit that have at least 100 mm longer stroke than the maximum stroke you need so that the unit can stop before colliding with
the ends and also allow for some adjustment of the unit postition at the mounting.

Tension Station

The tension station is the mechanical assembly situated in the opposite end of the drive station on a belt driven unit. The tension station has a mechanism that allows the belt pulley position to be adjusted thus changing the tension of the belt. Adjustment of the belt tension is normally only necessary when replacing a broken or worn out belt with a new.

Wheel Guides

A wheel guide consists of ball bearing wheels that run on a hardened steel rail. Wheel guides are a simple and robust guiding method offering high speeds, high loads and medium accuarcy.

Working Environment

All units are designed for use in normal industrial environments. Units which have an open profile (i.e. have no cover band) are more sensitive to dust, dirt and fluids. These units require some kind of cover if they are used in environments where dust, dirt or fluids are present. Wash down or enhanced wash down protection can be ordered for our closed profile units. Please refer to the accessory pages. In all cases where a unit will be exposed to aggressive chemicals, heavy vibrations or other potentially harmful processes we recommend that you contact us for further advice.

[^0]: A1: depth 11

[^1]: ${ }^{1}$ Value in mm

[^2]: A1: depth 22

[^3]: ${ }^{1}$ Value for the complete unit
 ${ }^{2}$ Value for the ball guide only

[^4]: ${ }^{1}$ With radial mount option only.

[^5]: ${ }^{1}$ Value in mm

[^6]: ${ }^{1}$ Value in mm

[^7]: ${ }^{1}$ Value in mm

[^8]: ${ }^{1}$ Value in mm

[^9]: ${ }^{1}$ Value in mm

[^10]: ${ }^{1}$ Value in mm

[^11]: ${ }^{1}$ Value in mm

[^12]: ${ }^{1}$ Value in mm

[^13]: ${ }^{1}$ Value in mm

[^14]: ${ }^{1}$ Value in mm

[^15]: ${ }^{1}$ Value in mm

[^16]: ${ }^{1}$ Value in mm

[^17]: ${ }^{1}$ Value in mm

[^18]: ${ }^{1}$ Value in mm
 ${ }^{2}$ Second carriage is always a long carriage

[^19]: ${ }^{1}$ Value in mm
 ${ }^{2}$ Second carriage is always a long carriage

[^20]: ${ }^{1}$ Also see diagrams on next page

[^21]: ${ }^{1}$ Also see diagrams on next page

[^22]: Value in brackets $=$ for short carriage .

[^23]: ${ }^{1}$ The total mass is the mass of all masses to be moved (objects to be moved, carriage(s)/rod, screw).
 ${ }^{2}$ In vertical applications, the mass acceleration must be added to the acceleration due to gravity $g\left(9,81 \mathrm{~m} / \mathrm{s}^{2}\right)$.
 ${ }^{3}$ This value can be found in the carriage idle torque tables for each linear motion system.
 ${ }^{4}$ This value can be found in the additional technical data tables.

[^24]: ${ }^{1}$ This value can be found in the additional technical data tables.
 ${ }^{2}$ This value can be found in the performance specifications tables for each unit.

[^25]: ${ }^{3}$ Leave position blank if no additional protection is required.

[^26]: * Both screw and belt driven units can have single or double carriages.

