FineLine Ball Screws

Manufactured using BS&A's PSF Technology™

Solutions by Danaher Motion

Volt & Serviced By: **ELECTROMATE** Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

FineLine Ball Screws

The high precision alternative to costly ground ball screws.

FineLine Ball Screws were developed by BS&A (previously known as Warner Linear) in Wolfschlugen, Germany, and have been sold in Europe since 1999. The screws have been successfully deployed in high-precision applications in transporation, manufacturing, health, fitness, robotics, plastics and packaging industries. BS&A's PSF Technology[™] enables us to manufacture ball screws with accuracy and performance in the same class as precision ground screws, yet without the extreme expense of grinding processes.

Exclusive PSF Technology[™]

Precision Screw Forming (PSF) Technology is based on a proprietary process of precision roll forming. Through years of research, development and partnering with steel suppliers and equipment manufacturers we have de-

veloped a CNC-based rolling process. At the heart of the process is the ability to dynamically control both roller dies as well as other variables in the manufacturing process. The end result of this German-engineered process is the production of highly cost effective rolled product with capabilities equaling those normally attributed only to ground screws.

Features and Benefits

- Accuracy: Available in ISO accuracy grades P3 and P5 (permissible travel variation of 12 μm/300 mm and 23μm/ 300 mm, respectively), as well as in transport grades T5 and T7.
- Smooth operation: Made of high carbon alloy steel that we induction harden, stress relieve, and then polish to insure excellent operating smoothness.

- Quiet operation: High degree of accuracy and exceptional surface finish assure quiet operation.
- Consistent running torque: Precise screw cylindricality and ball-track roundness (max. deviation of 3 to 6 μm), both of which are necessary for consistent running torque in critical applications such as machine tool slides.
- **Preloads**: Can be supplied with customer-specified preloads from zero to 13% of the dynamic load rating.
- Flanges and Finish Machining: Available with flanged and nonflanged nut assemblies and machined standard end journals.

sales@electromate.com

BS&A FineLine **Ball Screws**

Table of Contents

Technical Overview & Functional Highlights

Precision Screw Forming Technology™	3
Accuracy & Precision Classes	4
Preload Classes	5
Ball Recirculation Techniques	6

FineLine Ball Screws Product Specifications

Metric Unit Sizes

Part Numbers	8
FineLine Ball Screw Assembly Availability	9
BS&A's Ball Nut Types	9
Standard Flanged Ball Nuts - FK & FH	10
Standard Threaded Ball Nuts - ZG	
Flanged Ball Nuts - FL	14
Standard End Journals	16

New English Unit Sizes

Part Numbers	
FineLine Ball Screw Assembly Availability	
Threaded Ball Nuts - ZG	
Flanged Ball Nuts - FK & FL	

Engineering Reference

Efficiency & Torque	21
Functional Life	22
Speed Limitations	23
Buckling	24
Rigidity	25
Lead Accuracy	26
Lubrication	27
Materials	27
Glossary	28

Technical Overview

Pages 2-6

Product Specifications

Pages 7-19

Engineering Reference

Pages 20-28

CONTRACTOR CONTRACTOR

Technical Overview & Functional Highlights

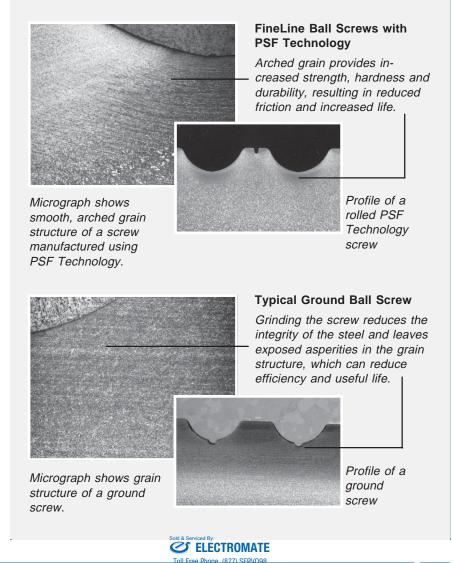
Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com BS&A's patented, German-engineered Precision Screw Forming (PSF) Technology has created a higher performing ball screw, combining outstanding precision—traditionally only associated with ground screws—with the manufacturing efficiency of rolled processes. The result is an affordable ball screw with highest precision and outstanding performance.

BS&A FineLine ball screws are equal in accuracy and performance to ground screws of the same accuracy class, but with harder grain structures (see inset), lower costs, and short manufacturing times (provides significantly reduced lead times for our customers). PSF Technology consistently produces screws with accuracies ranging up to P3 class tolerances (ISO 3408 standard), a dramatic improvement over existing rolled manufacturing processes that typically produce only transportgrade screws (up to class 7). PSF Technology brings affordable precision to a range of new applications.

What is PSF Technology?

Precision Screw Forming is an exacting manufacturing process that results in a superior ball screw. First, high carbon alloy steel blanks are processed into screws of length up to four meters (over 13 feet) in a special CNC-controlled, dual-movable-die, cold-forming machine. Second, the screw forms are induction-hardened and stress-relieved. Next, the screws are polished to produce a ball track with surface toughness superior to a ground screw. Finally, the ball screw is mated with its nut (loaded to user specifications), inspected and tested to customer requirements. The result is a high precision, high quality ball screw/nut assembly.

What are the Benefits of PSF Technology?


Here are just some of the benefits associated with ball screws made using PSF Technology:

1. FineLine ball screws offer low cost, high precision performance in applications typically requiring ground screws. FineLine also offers the opportunity for greater precision in applications where ground screws have been too expensive to consider.

- 2. Responsive manufacturing & delivery times: PSF Technology is a fast, nonbatch manufacturing process, with delivery times of less than two weeks, compared with the typical 2-3 month lead times of ground ball screws.
- No hard spots: The PSF process does not expose hard spots ("corns") as grinding does. Hard spots can mar ball surfaces and shorten screw life by up to 20%.
- Quieter running: The superior surface finish of FineLine ball screws gives smooth operations with minimal noise.

FineLine Ball Screws – Better Grain Structures

In addition to equaling some of the top accuracy classes of ground screws, our FineLine Ball Screws offer a distinct advantage over ground screws in the screw's arch. Screw rolling displaces grains, producing arch-shaped grain structures, while grinding removes material and leaves asperities exposed in the grain structure. FineLine rolled screws thus have increased rust resistance, and a stronger, arched grain structure that induces hardness under the surface of the screw.

Foll Free Fax (877) SEF

Accuracy & Precision Classes

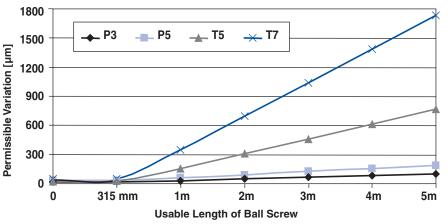
Accuracy is a measure of how closely a motion system will approach a command position. Perfect accuracy, for example, means that advancing a ball nut a precise amount from a given point on the screw always requires exactly the theoretically predicted number of revolutions.

Accuracies may be specified by users in two ways.

- Standards have been developed for simplicity in grouping sets of accuracies. Tolerance classes have been established by ISO/DIN for the purpose of easily describing lead accuracies for ball screws.
- Absolute terms may define accuracies such as .0005 in/ft deviation (typically shown as tolerances on a drawing).

FineLine ball screws are produced in two main tolerance classes: T (transport) and P (positioning). *Transport grade* ball screws are used in applications requiring only coarse movement or those utilizing linear feedback for position location. As such, most transport grade screws are provided with nuts having backlash (T7 grade screws cannot be supplied with preloaded nuts). *Precision grade* ball screws are used where repeatable positioning within microns is critical, without the use of a linear feedback device.

Differences between P & T grades are highlighted in the graph above. T grade transport screws allow greater cumulative variation over the useful length of the screw. P grade positioning screws contain accumulation of lead error to provide precise positioning over the screw's entire useful length.

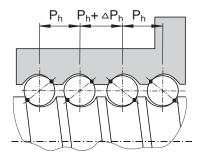

Position grade screws are used in applications such as CNC milling machines, medical imaging equipment, and lens grinding devices. In contrast, transport grade screws are used to drive door actuators or assembly line diverter gates.

For additional information, see page 26 in the engineering reference section.

Allowable Variation Per Tolerance Class

Tolerance Class		ravel variation 300 mm		n within ion (2π rad)
	[µm]	[in.]	[µm]	[in.]
P3	12	.0005	6	.0002
P5	23	.0009	8	.0003
T5	23	.0009	8	.0003
Τ7	52	.0020	12	.0005

Cumulative Lead Variation Over Usable Length

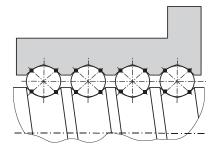

oll Free Phone (877) SERVO9 Toll Free Fax (877) SERVO99 www.electromate.com sales@electromate.com

Preload Classes

FineLine Ball Screws are available in three preload classes: Clearance Grade (no preload), Preload (lightly preloaded with four points of contact) and Precise Preload (preloaded with two points of contact to exact customer specifications).

Precise Preload (Type ZO)

(Precisely preloaded to customer specifications)

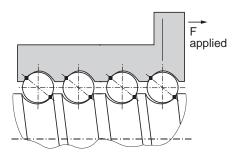

Precise Preload

The lead is offset by an amount, ΔP_h , to preload with two points of contact around the balls as shown.

- Offers zero backlash between screw and nut.
- The preload is approximately 10% of dynamic load capacity, but can range from 2% to 13% as specified by customers. Drag torque is controlled within a designated range.
- Typically used for positioning applications where repeatability and high stiffness are required (high stiffness allows for high load carrying with minimum deflection).

(Available only with FL nut.)

Preload (Type Z1) (Lightly preloaded)


Preloaded

Oversized balls slightly larger than the ball groove space are used to provide four points of contact.

- Offers zero backlash between screw and nut.
- The preload is approximately 5% of dynamic load capacity.
- Typically used for positioning applications where repeatability is critical.

(Available with FK, FH & ZG style nuts.)

Clearance Grade (Type Z2) (No Preload)

No Preload

Ball bearings are undersized, thereby creating clearance between the nut and screw.

- Axial play is present between screw and nut, which negatively affects repeatability.
- Introduces no additional drag torque.
- Lead accuracy is unaffected, repeatability is approximately equal to backlash amount. (Typical maximum backlash is .09 to .18 mm, depending on size.)
- Typically used for transport applications or vertical applications where low drag is desirable.

(Available with FK, FH & ZG style nuts.)

CELECTROMATE

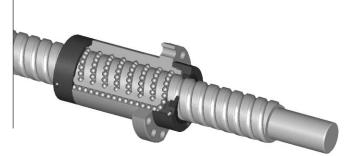
Ball Recirculation Techniques

A critical aspect of ball nut design is the manner in which the ball bearings are recirculated through the nut.

BS&A has done extensive research on ball nut design, and has engineered two internal return systems: the singleliner ball return system and the endcap ball return system. Internal systems are compact, offer no protrusions to complicate mounting, are less likely to be damaged, and are designed to optimize ball circulation and rotational speed.

The *single-liner* design allows the balls to travel one rotation about the screw before being diverted into the insert and back one thread pitch. Four or more liners are used to provide the necessary number of loaded turns to achieve the desired load capacity. Successive liners are typically staggered circumferentially about the body of the nut to balance the total ball contact around the screw. The simplicity of design and economy of motion result in a compact and reliable ball return assembly. The return design is primarily used on fine lead screws.

For higher leads, end-cap designs are preferable. The balls are allowed to rotate around the screw for the length of the nut before being re-directed by the end cap. This internal return channel runs from one end of the nut to the other and carries the balls back to the beginning of the circuit. The second end cap re-engages the balls with the screw, completing the circuit. The end cap design eliminates dead zones in the ball nut and optimizes load capacity. Rotational speed is enhanced through the geometry of the end cap diverter and the few number of returns required.


Single-Liner Ball Return System

The single-liner ball return design is used for the FK, FL & ZG type nuts.

End-Cap Ball Return System

The end-cap design offers distinct advantages and is the system used for the FH type nuts

CONCELECTROMATE

6


Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

FineLine Ball Screws Product Specifications Metric Unit Sizes

Toll Free Fax (877) SEF www.electromate.com sales@electromate.com Metric Unit Sizes

Metric Unit Sizes: Part Numbers

*For FL nut loading, the number selected indicates the preload force as a percentage of dynamic load capacity. For example, a 12% preload would be "Z0.12".

FineLine Ball Screw Assembly Availability

Metric Series Availability

Nominal Diameter	Nut		No	minal lea	d d _o [mm/				
[mm]	Туре	4	5	10	20	25	40	FK (flanged nut, standard lead)	
12	FH							See page	
	FK							page 10.	
	ZG								
	FL							A MARTINE	
16	FH								
	FK							 Available with preload or no preloa Shortest nut length possible 	
Γ	ZG							Excellent economical solution	
	FL		0						
20	FH								
	FK							FH (flanged nut, high lead)	
	ZG							See	
	FL		0					page 10.	
25	FH					•		Comme	
	FK							S. Contraction of the	
	ZG								
	FL		0					 Available with preload or no preloa 	
32	FH				•			Shortest nut length possibleExcellent economical solution	
	FK								
	ZG		•						
	FL		0	0				ZG (threaded nut)	
40	FH							See	
	FK							page	
	ZG							12.	
	FL		0	0				O A MINIMAN	
50	FH								
	FK								
	ZG							 Available with preload or no preloa Solution for non-standard mountin 	
	FL			0					
63	FH				0				
Γ	FK			0				FL (precision, flanged nut)	
	ZG			0				Soo	
Γ	FL			0				page	
80	FH							14.	
	FK			0					
	ZG			0				2 A MARINE	
F	FL			0					

BS&A is continually developing additional size offerings. Contact us if your desired size is not listed.

Product

Sold & Serviced By: Toll Free Phone (877) SEBV(Toll Free Fax (877) SEF www.electromate.co sales@electromate.com

Ball Nut Types

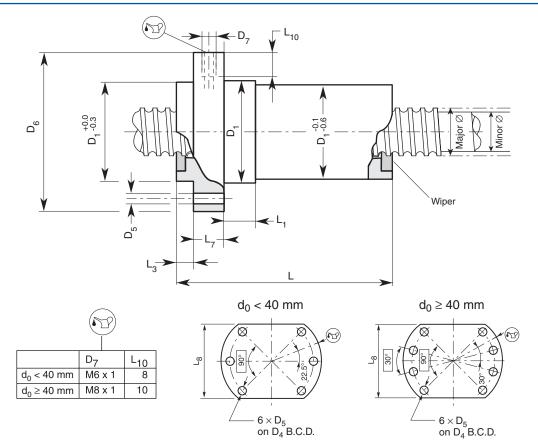
FK & FH

Standard Flanged Ball Nuts—Clearance & Preload Grade

Standard Flanged Ball Nut and Screw

- Available with preload or no preload
- Shortest nut length possible
- Excellent economical solution

Performance Specifications for ball screws with Flanged Ball Nuts


Metric Series

Nom. Diam.	Lead	Nut Type		Pe	rformance	e Data	Screw Dimensions					
d _o	P _{h0}		Dynam Load C	ic <u>apacity</u> (C _{am})	Static Load Ca	apacity (C _{0am})	Max Axial Backlash	Major Ø	Minor Ø	Max Length	<u>Screw</u>	Weight
[mm]	[mm]		[kN]	[lbf]	[kN]	[lbf]	[mm]	[mm]	[mm]	[mm]	[kg/m]	[[lb/ft]
16	5	FK	9.5	2136	10.9	2450	0.09	15.6	12.7	3000	1.2	0.81
20	5	FK	11.5	2585	15.5	32484	0.09	19.6	16.7	4000	2	1.34
20	20	FH	11.5	2585	17.5	3934	0.09	19.6	16.7	4000	1.9	1.28
25	5	FK	13.1	2945	20.2	4541	0.09	24.6	21.7	5000	3.3	2.22
25	10	FH	22.9	5148	141.2	31742	0.09	24.6	21.7	5000	3.3	2.22
25	25	FH	13	2922	22.6	5080	0.09	24.6	21.7	5000	3.3	2.22
32	5	FK	19.3	4339	363	81602	0.09	31.6	287	6000	5.6	3.76
32	10	FK	26.4	5935	39	8767	0.15	31.6	27.1	6000	5.3	3.56
32	20	FH	47.2	10611	83.2	18703	0.15	31.6	27.1	6000	5.3	3.56
40	5	FK	26.3	5912	59.2	13308	0.09	39.6	36.7	6000	9	6.05
40	10	FK	64.9	14590	109	24503	0.18	39.6	34	6000	8.3	5.58
40	20	FH	52.2	11735	103.6	23289	0.15	39.6	35.2	6000	7.6	5.11
40	40	FH	59.7	13421	108.9	24481	0.18	39.6	34	6000	8.4	5.64
50	10	FK	66.4	14927	134.3	30191	0.18	49.5	43	6000	13.5	9.07
50	20	FH	78.8	17714	188.7	42420	0.16	49.5	446	6000	13.6	9.14
63	10	FK	93.8	21086	229.7	51637	0.18	62.5	56.9	6000	22	14.78
63	20	FH	103.1	23177	270.8	60876	0.18	62.5	56.9	6000	22	14.78
80	10	FK	121.9	27404	374.9	84281	0.18	79.5	73.9	6000	36.4	24.6

Note: All listed products available in P3, P5, T5 & T7 accuracy classes.

CELECTROMATE

Standard Flanged Ball Nuts—Clearance & Preload Grade

Dimensional Specifications for ball screw nuts (Flanged Ball Nuts)

Nom. Diam.	Lead	Nut Type						Nut D	imensions [mm]				
d_o [mm]	P_{hO} [mm]		D₁ g ₆	D_4	D ₅	D₆ h ₁₂	L ±1	L ₁ +2	L₃ -0.5	L₇ h ₁₃	L₈ հ ₁₃	<u>Nut W</u> [kg]	<u>/eight</u> [lbm]	Ball Ø (D_w) [mm]
16	5	FK	28	38	5.5	48	48.5	10	5.5	10	40	0.25	0.55	3.500
20	5	FK	36	47	6.6	58	48.5	10	5.5	10	44	0.35	0.77	3.500
20	20	FH	36	47	6.6	58	59	20	14	10	44	0.45	0.99	3.500
25	5	FK	40	51	6.6	62	49	10	6	10	48	0.37	0.82	3.500
25	10	FH	40	51	6.6	62	51	9	16	10	48	0.45	0.99	3.500
25	25	FH	40	51	6.6	62	71	20	15.5	10	48	0.55	1.21	3.500
32	5	FK	50	65	9	80	57	10	6	12	62	0.7	1.54	3.500
32	10	FK	50	65	9	80	73	16	6	12	62	0.8	1.76	5.556
32	20	FH	56	71	9	86	83	25	19	12	68	1.4	3.09	5.556
40	5	FK	63	78	9	93	66	10	7	14	70	1.2	2.65	3.500
40	10	FK	63	78	9	93	88.5	16	7	14	70	1.4	3.09	7.144
40	20	FH	63	78	9	93	83	25	19.5	14	70	1.6	3.53	5.556
40	40	FH	70	85	9	100	104	25	21	14	77	2.4	5.29	7.144
50	10	FK	75	93	11	110	92	16	7	16	85	2	4.41	7.144
50	20	FH	75	93	11	110	85	16	22	16	85	2.2	4.85	6.350
63	10	FK	90	108	11	125	103.5	16	7	18	95	3	6.61	7.144
63	20	FH	95	115	13.5	135	86	18	24	20	100	3.8	8.38	7.144
80	10	FK	105	125	13.5	145	121	16	9 Sold & Servi	20	110	3.9	8.6	7.144

Specifications

Product

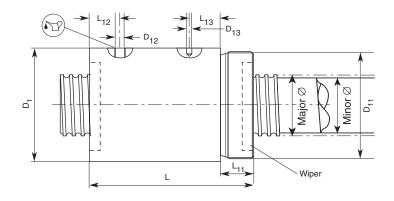
Metric Unit Sizes

Standard Threaded Ball Nuts-Clearance & Preload Grade

Standard Threaded Ball Nut and Screw

- Available with preload or no preload
- Solution for non-standard mounting

Nom.		Nut										
Diam.	Lead	Туре		Pe	rformance	e Data	Screw Dimensions					
d₀ [mm]	P_{h0} [mm]			Dynamic <u>Load Capacity</u> (C₂m) [kN] [lbf]		<u>apacity (Coam)</u> [lbf]	Max Axial Backlash [mm]	Major Ø [mm]	Minor Ø [mm]	Max Length [mm]	<u>Screw</u> [kg/m]	Weight [lb/ft]
<u>[]]]</u> 12	4	ZG	3.5	787	[kN] 4	899	0.07	11.6	9.7	3000	0.7	0.47
16	5	ZG	12.1	2720	14.5	3260	0.09	15.6	12.7	3000	1.2	0.81
20	5	ZG	14.8	3327	20.7	4653	0.09	19.6	16.7	4000	2	1.34
25	5	ZG	20.4	4586	33.7	7576	0.09	24.6	21.7	5000	3.3	2.22
25	10	ZG	19.9	4474	31.8	7149	0.09	24.6	21.7	5000	3.3	2.22
32	5	ZG	23.3	5238	45.5	10228	0.09	31.6	287	6000	5.6	3.76
32	10	ZG	33.8	7598	52	11690	0.15	31.6	27.1	6000	5.3	3.56
40	5	ZG	26.3	5912	59.2	13308	0.09	39.6	36.7	6000	9	6.05
40	10	ZG	78.6	17669	136.2	30618	0.18	39.6	34	6000	8.3	5.58
50	10	ZG	97.8	21985	213.2	47927	0.18	49.5	43	6000	13.5	9.07
63	10	ZG	109.7	24661	275.6	61955	0.18	62.5	56.9	6000	22	14.78
80	10	ZG	121.9	27403	375	84300	0.18	79.5	73.9	6000	36.4	24.46


Performance Specifications for ball screws with Threaded Ball Nuts Metric Series

Note: All listed products available in P3, P5, T5 & T7 accuracy classes.

Standard Threaded Ball Nuts-Clearance & Preload Grade

Specifications

Dimensional Specifications for ball screw nuts	(Threaded Ball Nuts)
--	----------------------

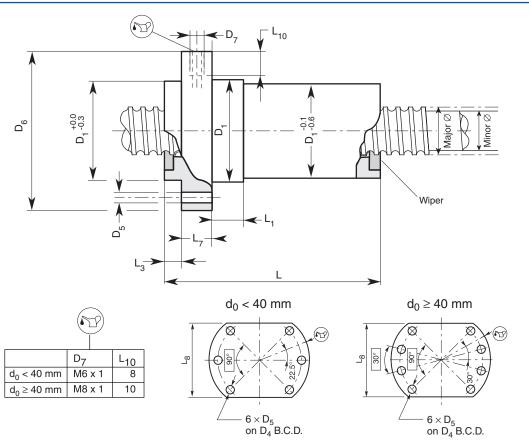
Nom. Diam.	Lead	Lead	Nut Type										
d_o [mm]	P_{h0} [mm]		D 1 h ₁₂	D ₁₁	D ₁₂	D₁₃ ±0.1	L ±1	L₁₁ -0.5	L ₁₂ ±2	L ₁₃ ±2	<u>Nut W</u> [kg]	eight [lbm]	Ball Ø (D_w) [mm]
12	4	ZG	25.5	M 20 x 1.0	3.2	-	34	10	12.0	-	0.1	0.22	1.984
16	5	ZG	32	M 30 x 1.5	M 6 x 1	4	57.5	16.5	10.5	22.0	0.22	0.49	3.500
20	5	ZG	38	M 35 x 1.5	M 6 x 1	4	57.5	16.5	10.5	22.0	0.3	0.66	3.500
25	5	ZG	42	M 40 x 1.5	M 6 x 1	4	63.5	17	10.5	23.0	0.37	0.82	3.500
25	10	ZG	42	M 40 x 1.5	M 6 x 1	4	61	17	10.0	21.0	0.38	0.84	3.500
32	5	ZG	52	M 48 x 1.5	M 6 x 1	5	65.5	19	10.5	23.0	0.55	1.21	3.500
32	10	ZG	52	M 48 x 1.5	M 6 x 1	5	85	19	12.0	43.0	0.65	1.43	5.556
40	5	ZG	58	M 56 x 1.5	M 8 x 1	5	67.5	19	12.0	22.5	0.6	1.32	3.500
40	10	ZG	65	M 60 x 2.0	M 8 x 1	6	105.5	27	13.0	43.0	1.25	2.76	7.144
50	10	ZG	78	M 72 x 2.0	M 8 x 1	6	118	29	13.0	53.0	1.95	4.30	7.144
63	10	ZG	92	M 85 x 2.0	M 8 x 1	6	118	29	13.0	53.0	2.4	5.29	7.144
80	10	ZG	120	M 110 x 2.0	M 8 x 1	8	126	34	15.5	53.0	4.9	10.8	7.144

Metric Unit Sizes

Flanged Ball Nuts-Precise Preload Grade

Flanged Ball Nut and Screw

- Available with precise preload
- Excellent rigidity
- Highest precision


Performance Specifications for ball screws with Flanged Ball Nuts

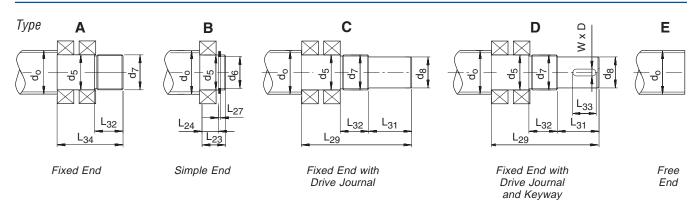
Metric Series

Nom. Diam.	Lead	Nut Type			rformance	Data	Screw Dimensions							
do	Pho		<u>Capaci</u>	ic Load ty (C _{am})	-	ity (C _{0am})	•	Max Axial nu)* Backlash	Number of Loaded	Major Ø	Minor Ø	Max Length	Screw V	
[mm]	[mm]		[kN]	[lbf]	[kN]	[lbf]	[kN/µm]	[mm]	Turns	[mm]	[mm]	[mm]	[kg/m]	[lb/ft]
16	5	FL	6.7	1506	7.2	1619	0.16	0.00	2 + 2	15.6	12.7	3000	1.2	0.81
20	5	FL	11.5	2585	15.5	3484	0.30	0.00	3 + 3	19.6	16.7	4000	2	1.34
25	5	FL	12.6	2832	19.1	4294	0.38	0.00	3 + 3	24.6	21.7	5000	3.3	2.22
32	5	FL	19.3	4339	36.4	8183	0.60	0.00	4 + 4	31.6	287	6000	5.6	3.76
32	10	FL	26.4	5935	39	8767	0.49	0.00	3 + 3	31.6	27.1	6000	5.3	3.56
40	5	FL	26.3	5912	59.2	13308	0.89	0.00	5 + 5	39.6	36.7	6000	9	6.05
40	10	FL	64.9	14590	109	24503	0.94	0.00	4 + 4	39.6	34	6000	8.3	5.58
50	10	FL	66.4	14927	134.3	30191	1.18	0.00	4 + 4	49.5	43	6000	13.5	9.07
63	10	FL	93.8	21086	229.7	51637	1.74	0.00	5 + 5	62.5	56.9	6000	22	14.78
80	10	FL	121.9	27404	375	84303	2.45	0.00	6 + 6	79.5	73.9	6000	36.4	24.6

Note: FL listed products available in P3 accuracy class only. *Nut stiffness based on 10% preload (F= $10\% \times C_{am}$).

Flanged Ball Nuts-Precise Preload Grade

Dimensional Specifications for ball screw nuts (Flanged Ball Nuts)

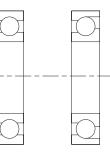

Nom. Diam.	Lead	Nut Type						Nut Dim	ensions (m	m]				
d₀ [mm]	P_{h0} [mm]		D 1 g6	D ₄	D ₅	D 6 h ₁₂	L ±1	L ₁ +2	L₃ -0.5	L7 h13	L₈ h ₁₃	<u>Nut V</u> [kg]	<u>Veight</u> [lbm]	Ball Ø (D_w) [mm]
16	5	FL	28	38	5.5	48	55	10	5.5	10	40	0.21	0.46	3.500
20	5	FL	36	47	6.6	58	68.5	10	5.5	10	44	0.38	0.84	3.500
25	5	FL	40	51	6.6	62	69.5	10	6	10	48	0.38	0.84	3.500
32	5	FL	50	65	9	80	83	10	6	12	62	0.72	1.59	3.500
32	10	FL	50	65	9	80	105.5	16	6	12	62	0.82	1.81	5.556
40	5	FL	63	78	9	93	97	10	7	14	70	1.3	2.87	3.500
40	10	FL	63	78	9	93	142	16	7	14	70	1.5	3.31	7.144
50	10	FL	75	93	11	110	144	16	7	16	85	2.2	4.85	7.144
63	10	FL	90	108	11	125	166	16	7	18	95	3.3	7.28	7.144
80	10	FL	105	125	13.5	145	192	16	9	20	110	4.3	9.48	7.144

FL

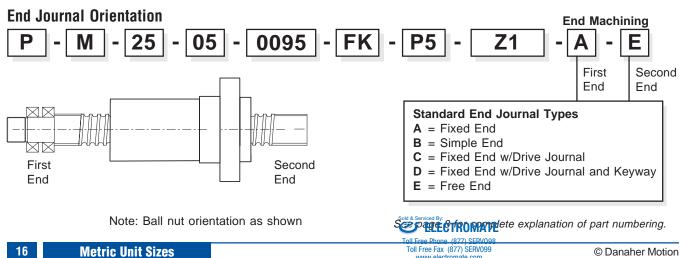
BS&A FineLine Ball Screws

Metric Unit Sizes

Standard End Journals



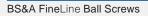
Specifications for standard end journals [mm]


do	d_5	d ₆	d ₇	d ₈	L ₂₃	L ₂₄	L ₂₇	L ₂₉	L ₃₀	L ₃₁	L ₃₂	L ₃₄	W x L ₃₃ x D
	j6	h ₁₂		h ₇			h ₁₃						
16	12	11.5	M12 x 1.0	10	10.5	8	1.1	59	35.5	25	10	33	3 x 18 x 1.8
20	15	14.0	M15 x 1.0	12	13	9	1.1	62	48	35	12	37	4 x 27 x 2.5
25	20	19.0	M20 x 1.0	16	16	12	1.3	86	61	45	14	41	5 x 36 x 3
32	25	23.9	M25 x 1.5	20	19	15	1.3	104	74	55	17	49	6 x 45 x 3.5
40	30	28.6	M30 x 1.5	25	21	16	1.6	117	85	64	17	53	8 x 50 x 4
50	40	37.5	M40 x 1.5	36	25	18	1.85	143	96	78	21	65	10 x 63 x 5
63	50	47.5	M50 x 1.5	40	27	20	2.0	169	127	100	25	70	12 x 78 x 5
80	60	57.5	M60 x 2.0	50	29	22	2.15	201	149	120	30	81	14 x 100 x 5.5

Bearings & Lock Nuts for recommended end journal bearings

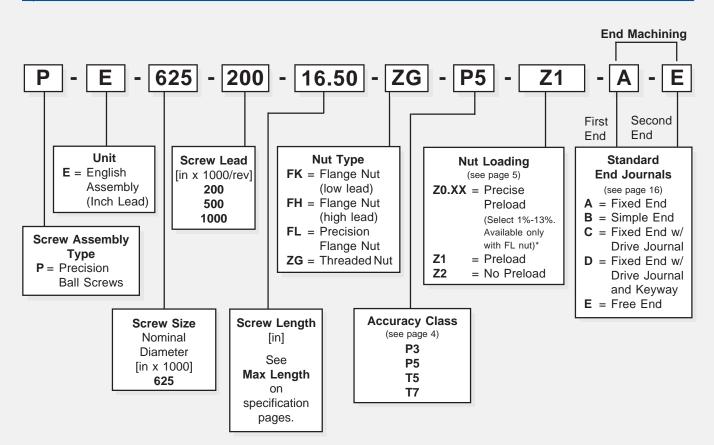
do	End Journal	End Journal	
[mm]	Type B: DIN 625	Types A, C: DIN 628	Lock Nut: DIN 631
16	6001	7301 B	KM 1
20	6002	7302 B	KM 2
25	6004	7204 B	KM 4
32	6205	7305 B	KM 5
40	6206	7306 B	KM 6
50	6208	7308 B	KM 8
63	6210	7310 B	KM 10
80	6212	7312 B	KM 12

DIN 625 **DIN 628**



www.electromate.com sales@electromate.com

FineLine Ball Screws Product Specifications English Unit Sizes



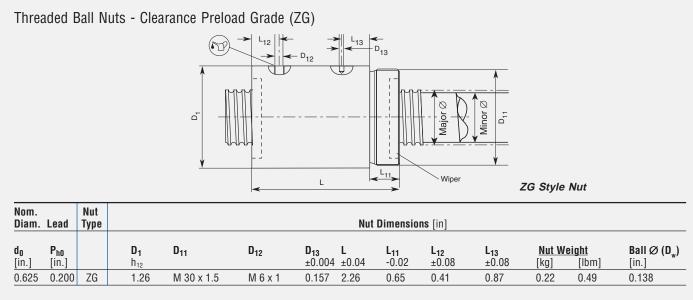
Toll Free Phone (877) SERVO Toll Free Fax (877) SERVO www.electromate.com sales@electromate.com

FineLine Ball Screw Assembly Availability - English Series

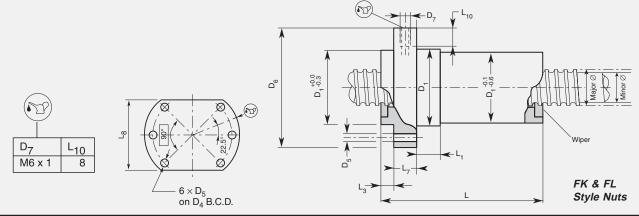
Nominal	Nut	Nominal lead d _o [in/rev]						
Diameter [in]	Туре	.200	.500	1.000				
.625	FK	0						
	ZG	•						
	FL	0						

• in stock O available non-stock.

BS&A is continually developing additional size offerings. Contact us if your desired size is not listed.

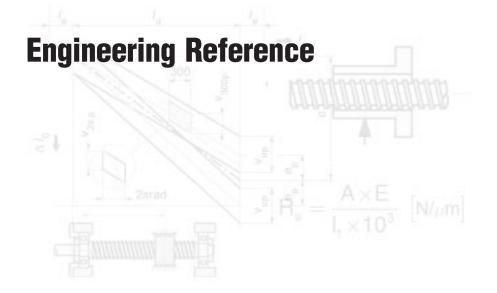

New	English	Unit	Sizes

Nom. Diam.	Lead	Nut Type		Pe	rformanc	e Data		Screw Dimensions					
d _o	P _{h0}		Dynamic Load Ca	; <u>pacity</u> (C _{am})	<u>Static</u> Load C	apacity (C _{0am})	Max Axial Backlash	Major Ø	Minor Ø	Max Length	Screw	Weight	
[in]	[in]		[kN]	[lbf]	[kN]	[lbf]	[in.]	[in.]	[in.]	[in.]	[kg/m]	[lb/ft]	
.625	.200	ZG	12.1	2720	14.5	3260	0.0035	0.61	0.5	118	1.2	0.81	
.625	.200	FK	9.5	2136	10.9	2450	0.0035	0.61	0.5	118	1.2	0.81	
.625	.200	FL	6.7	1506	7.2	1619	0.0000	0.61	0.5	118	1.2	0.81	


Performance Specifications for ball screws

Note: FK and ZG products available in P3, P5, T5 & T7 accuracy classes; FL available in P3 only.

Dimensional Specifications for ball screw nuts

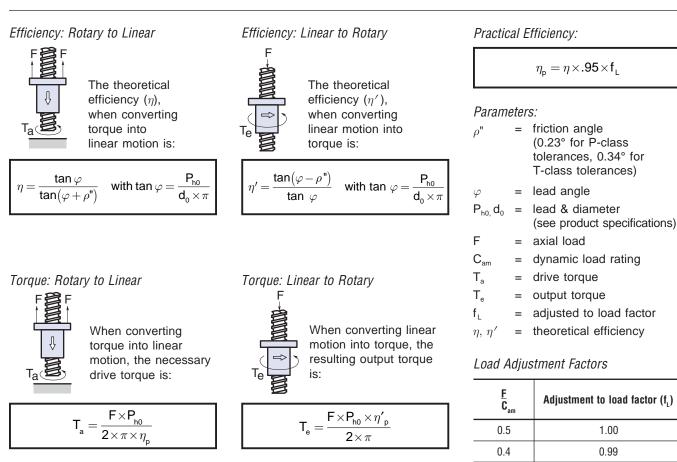

Flanged Ball Nuts - Clearance & Preload Grades (FK) and Precise Preload Grade (FL)

Nom. Diam. Lead	Nut Type		Nut Dimensions [in]										
d_o P_{hO} [in.] [in.]		D 1 g ₆	D_4	D ₅	D 6 h ₁₂	L ±0.04	L₁ +0.08	L₃ -0.02	L7 h13	L 8 h₁₃	<u>Nut W</u> [kg]	<u>/eight</u> [lbm]	Ball Ø (D_{in}) [in]
0.625 0.200	FK	1.10	1.50	0.22	1.89	1.91	0.39	0.22	0.39	1.57	0.25	0.55	0.138
0.625 0.200	FL	1.10	1.50	0.22	1.89	2.17	0.39	0022Servic		1.57	0.21	0.46	0.138
								O F	LECTRO	MAIE			

Product

Coll Free Phone

Toll Free Phone (877) SERVO98 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com


Efficiency & Torque

The ball screw assembly's performance in converting between linear motion and rotational torque is its efficiency, η . Efficiency depends primarily on geometrical data, though various operating influences can swing actual efficiency by $\pm 5\%$ from the calculated. As such, to account for operational influences such as speed, temperature, lubricant, etc., approximately 5% of the theoretical efficiency should be deducted.

Furthermore, if the ratio of load (F) to dynamic load rating (C_{am}) is below 0.5, then an additional reduction in relation to the load factor is to be applied (see table below for f_L).

The efficiency calculated on this basis applies for the ball screw including lubrication but without considering wipers or shaft support.

If an improvement in efficiency is required, please contact our engineering department.

For approximate torque based on 90% efficiency:

$$T_a = 0.177 \times F \times P_{h0}$$

$$T_e = .143 \times F \times P_{h0}$$

Applying the load adjustment factor and 5% reduction gives practical efficiency of: $n = n \times 95 \times f$.

0.98

0.97

0.96

$$\eta_{\rm p} = \eta \times .35 \times \eta_{\rm L}$$
$$\eta_{\rm p} = .96 \times .95 \times .97$$
$$\eta_{\rm p} = .88 \pm 5\%$$

0.3

0.2

0.1

Torque required to drive the load is given by:

$$T_{a} = \frac{10,000 \text{ [N]} \times .010 \text{ [m]}}{2 \times \pi \times .88}$$
Sold & Serviced By:
$$T \equiv 18.1 \text{ [Nm]}$$

Example Parameters: $40 \times 10 \text{ mm}$ screw, P3 class F = 10 kN C_{am} = 53.9 kN

Rotary to Linear Application The lead angle, φ , is found:

$$\tan \varphi = \frac{10}{40 \times \pi} = 0.08$$
$$\varphi = 4.55^{\circ}$$

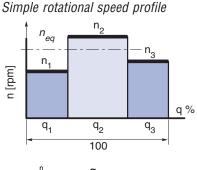
P3 precision indicates friction angle of ρ "=0.23°

Thus, the theoretical efficiency is:

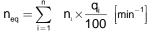
$$\eta = \frac{0.08}{\tan(4.55^\circ + 0.23^\circ)} = .96$$

The loading ratio is small, so a load adjustment factor is required:

Toll Free Phone


$$\frac{F}{C_{am}} = \frac{10}{53.9} = 0.19$$

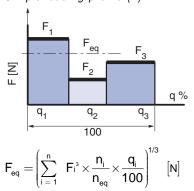
f. ≈ 0.97

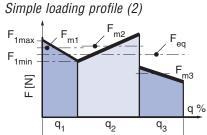

BS&A FineLine Ball Screws

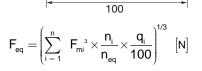
Life

The ball screw assembly's useful life will vary according to load and speed. Life is typically rated at 90% confidence, $\rm L_{\rm _{10}}$ (which represents time at which 90% of assemblies still perform).

Functional life should be determined by approximating equivalent rotational speed and loading force over typical performance cycles.



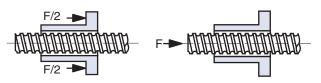



Modified Life

$$\begin{split} L_{10} = & \left[\frac{C_{am}}{F_{eq}} \right]^3 \times 10^6 \ [rev] \\ L_{h10} = & \frac{L_{10}}{n_{eq} \times 60} \ [hours] \end{split}$$

Simple loading profile (1)

Parameters:

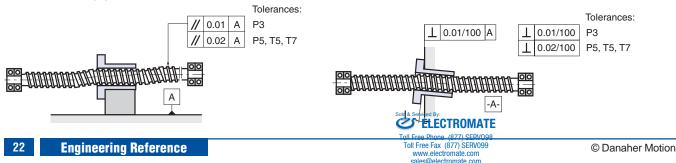

n_{eq} = equivalent rotational speed [rpm]

- F_{eq} = equivalent load [N]
- C_{am} = modified dynamic load rating [N] (see specification tables)

Nut Loading

Axial loading (on nut or screw) is optimal for performance and life. For applications requiring radial loads, please contact us.

Axial Loading: optimal


Radial Loading: detrimental*

*Minimize radial loading to less than 5% of the axial load.

Nut Mounting

Use the following guidelines to achieve optimal performance.

Speed Limitations

Critical Rotational Speed

Eccentricities in the screw will cause harmonic vibration at the critical rotational speed ($n_{\rm cr}$). Vibration speed and magnitude are determined by shaft diameter, unsupported length, type of bearing support, position of the ball nut in the stroke, how the ball nut is

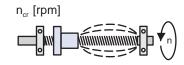
mounted, the shaft or ball nut rpm, etc. (Shaft vibrations may also be caused by a bent screw or faulty installation alignment.) BS&A recommends a 20% safety factor below critical harmonic speed.

 $f_{\rm cr} = 0.356$

1.56

2.27

Toll Free Phone


Mounting Condition Effects

Fixed-Free

Simple-Simple

Fixed-Simple

Fixed-Fixed

Maximum speed

A maximum rotational speed limit should be observed according to tolerance and shaft diameter regardless of critical speed limit compliance.

Tolerance class	Rotational speed limit [rpm]
P3, P5, T5	140,000/d _o [mm]
T7	100,000/d _o [mm]

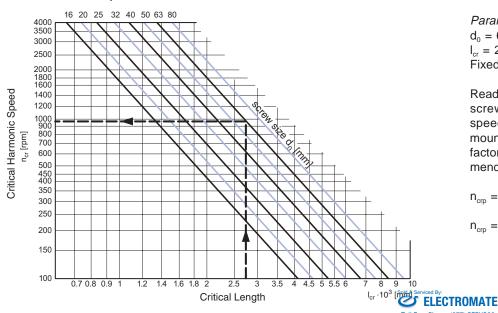
Critical harmonic speed:

$$n_{\rm cr}=1.2{\times}10^8{\times}\frac{d}{I_{\rm cr}^{2}}~[rpm]$$

Recommended maximum speed:

$$\mathbf{n}_{_{crp}}=0.8\!\times\!\mathbf{n}_{_{cr}}\times\!\mathbf{f}_{_{cr}}~[rpm]$$

Parameters:

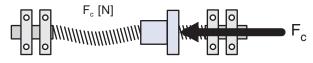

$$d\approx \frac{d_0+d_3}{2} \ [mm]$$

 $\mathbf{d_3}\approx\mathbf{d_0}-\mathbf{D_w}~[\mathrm{mm}]$

 $\mathbf{D}_{\mathbf{w}}=\mathbf{Ball}\phi \;\; [\mathbf{mm}]$

- $I_{cr} = critical \, length \, [mm]$
- $f_{cr} = mounting \ condition$ speed adjustment factor

Critical Harmonic Speed Chart


Example

Parameters: $d_0 = 63 \text{ mm}$ $l_{cr} = 2700 \text{ mm}$ Fixed-simple loading

Reading from chart, using length and screw size, gives critical rotational speed $n_{cr} = 970$ rpm. Fixed-simple mounting indicates speed adjustment factor of $f_{cr} = 1.56$. Thus, the recommended maximum speed is:

 $n_{crp} = 0.8 \times 970 \times 1.56$

Buckling

Compression loads (where force pushes on bearing and support) tend to cause the screw shaft to bend, re-

quiring larger screw diameters than for comparably loaded tensile situations. Where possible, applications should be

 $f_{cr} = 0.356$

= 1.56

= 2.27

Mounting Condition Effects

Fixed-Free

Simple-Simple

Fixed-Simple

Fixed-Fixed

designed for tension loading (where force pulls on bearing and support.)

Critical buckling force:

$$F_{c} = \frac{1.017 \times 10^{5} \times d^{4}}{I_{c}^{2}} \ [N]$$

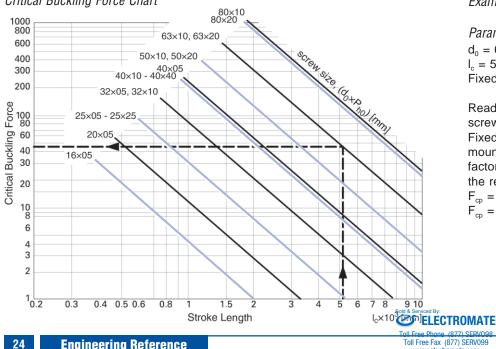
Recommended maximum force:

$$F_{_{cp}}=0.8\!\times\!F_{_{c}}\!\times\!f_{_{c}}~[N]$$

Parameters:

$$d \approx \frac{d_0 + d_3}{2} \ [mm]$$

 $d_0 = nominal diameter [mm]$


 $d_3 \approx d_0 - D_w \text{ [mm]}$

 $D_w = Ball\phi [mm]$ (see production specifications)

 $I_c = stroke length [mm]$

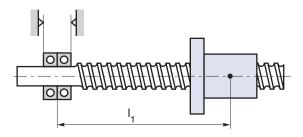
$$f_c = mounting condition load adjustment factor$$

Critical Buckling Force Chart

Example

Parameters: $d_0 = 63 \text{ mm}, \text{ Ph}_0 = 10 \text{ mm}$ $l_{c} = 5200 \text{ mm}$ Fixed-simple loading

Reading from chart, using length and screw size, gives $F_c = 45$ kN. Fixed-simple loading indicates a mounting condition load adjustment factor of $f_c = 2.0$ (from above). Thus, the recommended maximum load is: $F_{cp} = 0.8 \times 45 \times 2$ $F_{cp} = 72 \text{ kN}$


Rigidity

For most low-load applications, screw rigidity is not an essential design consideration, as screw deflection is very small compared with travel variation. For high precision, high load applications, however, deflection caused by loading may be significant. In these circumstances, precisely preloaded nuts should be used (series FL) to assure adequate system rigidity. The total rigidity R_{tot} of the ball screw unit is determined by the rigidities of the screw shaft (R_{s}^{-1} see below) and of the nut unit (R_{nu}^{-1} see product specification tables). Overall rigidity (without bearing) is calculated as:

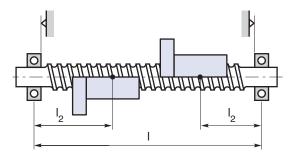
$$\frac{1}{R_{tot}} = \frac{1}{R_s} + \frac{1}{R_{nu}} [N/\mu m]$$

Screw Shaft Rigidity

Rigid mounting at one end

$$\mathbf{R}_{s} = \frac{\mathbf{A} \times \mathbf{E}}{\mathbf{I}_{1} \times \mathbf{10}^{3}} \ \left[\mathbf{N} / \mu \mathbf{m} \right]$$

Parameters:


 $E = 21 \times 10^4 [N/mm^2]$

I, I₁ [mm]

A = Cross sectional area of screw shaft (see below)

Rigid mounting at both ends

$$\begin{split} \mathbf{R}_{\mathrm{s}} = & \frac{\mathbf{A} \times \mathbf{E}}{\mathbf{I}_{2} \times 10^{3}} \times \frac{\mathbf{I}}{\mathbf{I} - \mathbf{I}_{2}} \ [\text{N}/\mu\text{m}] \\ & \left(\mathbf{R}_{\mathrm{s}} \text{ is minimum for } \mathbf{I}_{2} = 0.5 \ \times \ \mathbf{I}\right) \end{split}$$

Parameters:

$$E = 21 \times 10^4 \left[\text{N/mm}^2 \right]$$

 $I, I_2 [mm]$

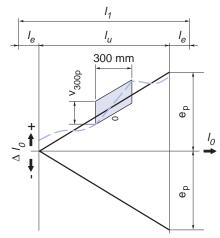
A = Cross sectional area of screw shaft (see below)

	Reference
	ering
	ngine
20	Ē

Screw shaft cross-sectional area

d _o [mm]	16	20	25	3	32		40		63	8	0
P _{h0} [mm]	5	5	5-25	5	10	5	10-40	10-20	10-20	10	20
A [mm ²]	162	263	428	723	685	1155		1705 ROMATE	2823	4650	4412

BS&A FineLine Ball Screws


Permissible Travel Deviations

Lead accuracy is specified by a tolerance class. The primary difference between the two tolerance class types offered is the way they control cumulative lead error. P class ball screws are more precise over long lengths than T class screws. Variation information for FineLine Ball Screws is given here.

P - Positioning Class Ball Screws Maximum error over useful length = $e_n + \frac{1}{2}v_{un} + C$

 I_{1} I_{e} I_{u} I_{e} I_{u} I_{e} I_{o} I_{o

T - Transport Class Ball Screws Maximum error over useful length = e_p

 $I_1 = Axial thread length$

 I_{μ} = Usable travel I_{a} = Excess travel

 $I_0 = Nominal travel$

 Δl_0 = Travel deviation

Parameters

			Accuracy Clas	SS
		P3	P5	T5, T7
V _{300p}	Permissible travel variation within 300 mm travel	Table 1	Table 1	Table 1
V _{2πp}	Permissible travel variation within 2π travel	Table 1	Table 1	-
С	Compensation for temperature	-	-	-
e _p	Tolerance on useful travel $I_{\rm u}$	Table 3	Table 3	$2 \times \frac{I_u}{300} \times V_{300p}$
V _{up}	Permissible travel variation within useful travel I_{u}	Table 3	Table 3	-

Permissible travel variation (Table 1)

Tolerance Class	3	5	7		
V _{300 p [µm]}	12	23	52		
V _{2π p [µm]}	6	8	-		

Excess travel (Table 2)

Nominal lead	P _{h0} [mm]	≤ 5	≤ 10	≤ 20	> 20
Excess travel	/ _e [mm]	20	40	60	80

Permissible cumulative travel variation over long distances (Table 3)

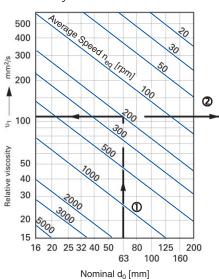
		I _u	>		315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000
		[mm]	<	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300
Tolerance Class	P3	e _p [µ	m]	12	13	15	16	18	21	24	29	35	41	50	62	76	-
		V _{up} [L	ım]	12	12	13	14	16	17	19	22	25	29	34	41	49	-
	P5	e _p [µ	m]	23	25	27	30	35	40	46	54	65	77	93	115	140	170
		۷ _{up} [۲	ım]	23	25	26	29	31	35	39	44	51	59	69	82	99	119

Lubrication & Materials

Correct lubrication of ball bearing screws is not only a must for achieving the calculated lifetime, but also is important for quiet running, for reducing temperature rise during operation, and for reducing the no-load torque. If the customer does not prescribe anything else, the final acceptance test at the factory will be performed with an oil ISO VG100. Other acceptable viscosities include ISO VG68, VG150 and VG200.

Oil lubrication

Generally, the use of CL oils or the use of alloyed CLP oils with EP additives increase the corrosion prevention and the resistance to aging. The correct viscosity depends on the circumference, speed (diameter and revolution), and the ambient and/or the anticipated operating temperature.


The precise amount of oil required per ball circle depends on the revolving speed. Amounts of approximately 0.3 to 0.5 cm³/h are adequate when using oil, or roughly 10% of this amount for greases. For submerged lubrication in a horizontal installation, oil levels at the center of the lowest ball are adequate.

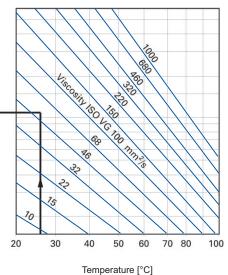
Grease Iubrication

Ball bearing screws can also be lubricated with grease, reducing time between required lubrications.

In operation, a small quantity of grease escapes from the nut and remains on the screw with each stroke (even with the best wipers), causing the grease supply to decrease during operation. To achieve calculated unit lifetime, L_{10} , it is therefore necessary either to cre-

Oil Viscosity Determination Chart

Example


Parameters:

Average speed, $n_{eq} = 200 \text{ rpm}$

Diameter, $d_0 = 63 \text{ mm}$

of 110 mm²/s.

Operating temperature, $t = 25^{\circ}C$

Projection of this value into the right diagram, with a temperature of 25°C results in the intersection point between ISO VG46 and ISO VG68. To guarantee a sufficient lubrication film at all working conditions, the higher value should be chosen, in this case ISO VG68, (at long operating times, possibly even higher viscosities could be used).

ate a lubrication time table or create a central lubrication installation system.

① For the nominal diameter 63 mm

and $n_{eq} = 200$ rpm the left part of

the diagram indicates a viscosity υ_1

For manual relubrication an average value of 700 operating hours can be assumed. This indication varies largely as a function of the machine construction and the application. The grease quantity has to be defined so that the cavities are approximately half full. Unnecessary temperature rise of the ball bearing screw by overgreasing is to be avoided by making sure that consumed grease or excess grease can escape.

Greases are divided into NLGI classes according to DIN 51818. Normally for ball bearing screws, water resistant greases of class K2K20 (DIN 51825) have to be used (operating temperature -20°C to +120°C). In special cases greases K1K-20 (at very high number of revolutions) and/or KP2K-20 (at high load and/or low speed) are also possible.

Materials

Our typical materials for components are shown below. Additional heat or surface treatments are available upon request including chrome plating (Armaloy).

Part	Material	Heat Treatment
Screw shaft	~ Cf 53 N	Induction hardened
Nut	19 Mn Cr 5	Carburized
Wiper	Nylon	
Ball	100 Cr 6	62 ± 2sold Recruiced By:
	1	C ELECTR

Toll Free Phone (877) 9

Please contact us for any additional requirements.

Glossary

Accuracy A measure of how closely a motion system will approach a command position. Perfect accuracy, for example, means advancing a ball nut exactly the same amount every time from a specific point on a screw will always require the theoretically predicated number of revolutions.

Backdrive Application of a force on a ball nut to cause rotation of the screw shaft; in essence, converting linear to rotary motion.

Backlash Free axial motion that is measured in a ball screw system.

Ball Circle Diameter The distance between the centerlines of two exactly opposing recirculating balls when they are in contact with the screw. The basic point of reference used by BS&A when dealing with ball screws.

Compression Load A force that would tend to squeeze the screw in an axial direction.

Critical Speed The condition where the rotary speed of the assembly sets up harmonic vibrations. These vibrations are the result of shaft diameter, unsupported length, type of bearing support, ball nut mounting method, or the shaft or ball nut rpm.

Cycle The complete load-carrying extension and retraction of the screw or nut. Each cycle consists of two strokes (one forward and one back to the point of origin).

Dynamic (Operating) Load The axial force which the ball screw will experience during movement.

Efficiency Expressed as a percentage, the ability of a ball screw assembly to convert torque to thrust with minimal mechanical loss.

End Fixity The bearing configurations that are used to support the ends of a ball screw assembly.

Lead The axial advance of the ball nut per revolution of the screw.

Linear Expansion Ball screw and spline inner races have a coefficient of linear expansion of 0.0000065 for each degree of change (F) and for each inch of race length.

Lubrication To provide the maximum useful life, ball screws require lubrication. In general, standard ball bearing lubrication practices are acceptable.

Off-Center Load A load that tends to create misalignment between the ball nut and screw shaft, which causes rotational binding and shortened operational life.

Operating Loads The normal operating force which the ball screw will experience is considered the operating load. Contact BS&A's application engineering for applications subject to widely fluctuating loads or to optimize design.

Preload A method of loading one set of bearing balls in opposition to each other to eliminate all axial freedom. Preloading increases system stiffness and eliminates backlash.

Repeatability The degree to which a system will return to the same command position over time. Axial backlash degrades repeatability by introducing uncertainty into the absolute nut position.

Root Diameter The diameter of the screw shaft as measured at the bottom of the ball track.

Screw Diameter (land diameter) The outside diameter of the screw shaft.

Screw Starts The number of individual threads on a screw shaft.

Side Load A radial force that significantly reduces rated life and can potentially lead to premature failure.

Static (Maximum) Load The maximum force that can be resisted without causing damage to the screw component with the system at rest.

Stiffness A ratio of load versus deflection of a component or of a total system.

Straightness Radial variation from a theoretically perfect cylinder of the same diameter.

Stroke The maximum length of travel required for the nut.

Temperature (operating) With suitable lubricants, ball screws will operate with a minimum loss of efficiency between temperatures of -65° to +300°F (-53° to +149°C). Contact BS&A for extreme temperatures.

Tension Load A force in a direction that would tend to stretch the screw.

Torque The force required to drive a ball screw in converting rotary to linear motion.

Travel and Travel Rate The distance a ball nut moves relative to the screw shaft. Travel rate is the distance traveled in a specific time period.

sales@electromate.com

Application	Requir	ements					BS&A	ell Avenue		
Company:							San Jos www.bal email: sa Toll-free	e, CA 95136-1305 Iscrews.com ales@bsa-fineline.com : 1-800-966-7231 08-629-2620		
Contact: Technical:				Phone:			Contact	BS&A for application		
rechnical.								ering assistance.		
Purchasing:										
	Fax: _			Email:						
Application:								New application		
								Existing application		
Parameters:								• • • •		
		d ₀		Lead _			h0	□ in □ mm		
Lead directio		□ right		□ left						
Maximum tra	vel devi	ation within 300 r	mm (12 in)			1/10000 in		μm		
Total length _			_ [mm]	Quanti	ty	per ye	ar			
Load ratings	6:									
Load: D lb			Speed:	rpm		Du	ity Cycle	: %		
F ₁ =										
F ₂ = F ₃ =			-			_				
- 3						-10				
Max. static lo	ad				□	bf □N				
Life required			(worl	king hours)			(10 ⁶ R	evolutions)		
Mechanical:										
Mounting		Horizontal		D Ver	tical		Diagonal			
Driven part		□ Screw		Nut						
Mounting		Fixed-Fixed	Sim	ple-Fixed	Simple	-Simple	Free-	Fixed		
configuration			X			нX				
							_			
	0							004		
	Scr	ew Produc	ts and	ScrewA	ssem	Diles If	om B	S&A		
	ision Gro			Anti-backla				tom & Stock		
Rolle	ed Ball S	crews		Lead Screw	IS		A	ssemblies		
	-4				-		-			
			and Ca	Rittin	•					
		*			2		-			
			41	la						
		Visit us on	the we	D: WWW	.Daijsc	CTROMATE	com			
					Toll Free Fa	ne (877) SERV098 ax (877) SERV099 ectromate.com				
						lectromate.com				

FineLine Ball Screws

Manufactured using BS&A's PSF Technology™

www.ballscrews.com

Sold & Serviced By:

Toll Free Phone (877) SERV090 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com