THE LINEAR MOTOR COMPANY

Frameless Torque Motor Series

QUALITY AND SERVICE DELIVERED WORLDWIDE

[TECNOTION]

Tecnotion is *the* global authority on direct drive motor technology. We are the world's only unbundled manufacturer of linear and torque motors. A former part of Philips, we specialize solely in the development and production of linear and torque motors. Because of this, our expertise, customer service and product quality are unmatched.

We have a global presence, with production plants in The Netherlands and China and local representation around the world. This ensures short delivery times and high quality support, wherever you are located.

When you do business with Tecnotion, you have a team of highly skilled sales and application engineers at your disposal. They help you from your initial prototype all the way to the application of our products and beyond.

Whatever your needs, you can rely on Tecnotion as a solid, reliable partner.

[SALES SUPPORT]

At Tecnotion we understand that each application of our motors is a unique case with specific requirements and demands.

Our sales and application engineers have extensive experience with a wide range of application types and collaborate on a high level with our customers to make sure you get the solution that best fits your requirements.

Additionally our specialized Simulation Tool is available to help you find your way through our wide range of motors and analyze/test out different motor types within your application specifications.

[INNOVATION]

We have an in-house R&D department, which is continuously pushing the boundaries of technology and taking our products to the next level. This translates directly to our high level of understanding of manufacturing processes.

Apart from our "off-the-shelf" range of standard motors, we can also design and manufacture custom made motors for high profile projects or OEM applications that require a tailor-made solution.

All our custom motors are built to the same high standards that characterize our standard range of products.

[MANUFACTURING]

Manufacturing of our standard range of motors takes place at our modern plant in China, where we are able to produce in high volume at very competitive rates.

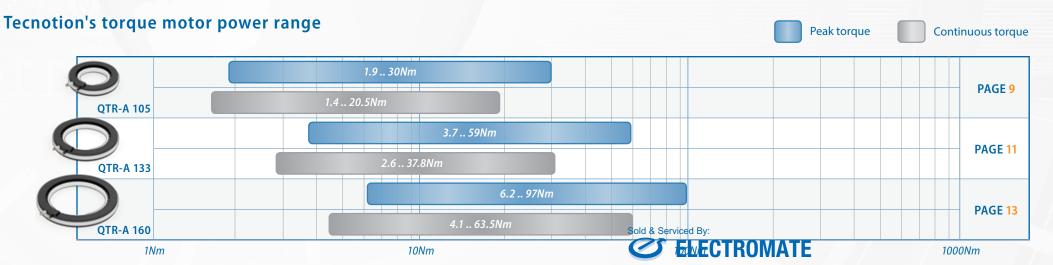
At our competence centre and headquarters in The Netherlands we specialize in advanced technology. This is where we do our research and development and where custom motors are built with extreme accuracy in our special state of the art clean room environment.

Tecnotion is committed to excellence. Both of our plants are ISO 9001 certified and comply to the highest quality standards possible.

[GLOBAL LOGISTICS]

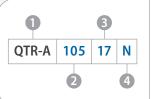
We always have our most popular products in stock in our warehouses in both The Netherlands and China.

Our logistics department can ship to you from both locations, making short delivery times possible across the globe, even when markets are ramping.



Frameless torque motors

Overview of the complete range



Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

Torque QTR Motor Series

- 1 QTR = Torque/A = rotor options
 2 Series type/outer diameter
 - 3 Motor height
 - Winding type

Why choose Tecnotion's Torque motor series?

Tecnotion's QTR torque motor series can find its way into many different markets, for example semiconductor, robotics, packaging, printing, machine tooling or medical application markets.

Due to the extensive motor design knowledge within Tecnotion, the QTR series are ahead in development. Compared to other torque motors, the QTR series offers a superior torque density and stands out with its small size and weight. The QTR has a low build height and larger inner diameter while offering the same or higher torque specifications compared to other torque motors. The low motor mass provides the opportunity to improve entire stage designs. Offering great opportunities to lower total cost of ownership in an application.

Tecnotion's extensive experience in coil design also reflects in the QTR thermal resistance characteristics. The QTR series offers enhanced thermal management compared to competitors. This can contribute, for instance, to motor reliability.

Finally, the QTR series also has a low cogging value like Tecnotion's iron core motor series, offering a smooth running characteristic and excellent position accuracy.

The range

The initial torque range consists of a series of three different outer diameters of 105, 133 and 160 mm for the largest motor. Each series has five build heights ranging from 17 mm up to 92 mm.

QTR-A 105 Series

Tp 1.9..30Nm Tc 1.4..20.5Nm

The QTR-A 105 is the smallest torque motor with a 105mm outer rang and 56mm inner diameter. This the series offers a continuous torque 29.2 range from 1.7 up to 19.5Nm QTR-spread over its 5 types. The largest torque of 30.2Nm with a total motor mass of under 3500 gram. Sold & Serviced By:

QTR-A 133 Series

Tp 3.7..59Nm Tc 2.6..37.8Nm

The QTR-A 133 is the medium range of the QTR motors. It covers the torque range from 2.6 to 29.2Nm. The largest 92 mm high QTR-A-133-92 motor offers a peak torque of over 58.9Nm.

QTR-A 160 series

Tp 6.2..97Nm Tc 4.1..63.5Nm

The 160 series is the largest in diameter of the torque range. The smallest of the series, QTR-A-160-17 starts with a continuous torque of 4.4Nm. The range ends with the large QTR-A-160-92 with a continuous torque of 48.3Nm and a peak of 97.2Nm.

Sold & Serviced By:

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

Tecnotion's QTR torque motor performance advantages

The direct drive technology of brushless torque motors is a perfect way to enhance productivity, accuracy, and dynamic performance of applications. The technology lowers costs, makes designs slimmer, and reduce wear and tear. Torque motors eliminate the need for mechanical transmissions like gearboxes, belts and speed reducers. Between rotor and stator there is no contact, this means no mechanical wear.

Direct drive

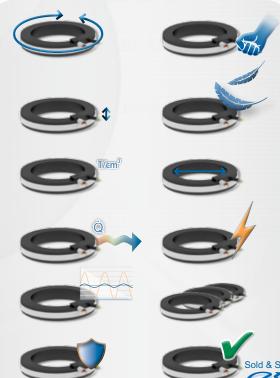
Higher stiffness no backlash.

Ultra thin design

The lower build height allows to build flatter axis, resulting in less tipping and settling time. Extraordinary flexibility in designing the motor in to small spaces.

Tecnotion QTR has the highest torque density in the market

More torque in a smaller packing means lowering footprint.


Low thermal resistance

Allowing good heat transfer, achieving an extremely high continuous torque when using a descent size heatsink or active cooling.

Low cogging value, **low total harmonic distortion THD**For smooth motion and position accuracy in your application.

Encapsulated design

No open coil wires which can be damaged or that need to be covered up for safety reasons.

Shielded cable with strain relief

No shielding EMC issues with loose wires. No risk to damage the motor by accidentally pulling the cable.

Low stator and rotor mass

Lower masses increase the dynamics and response of the system by lowering the inertia. It hands the opportunity to improve entire stage designs! And as a result, lowering an applications cost of ownership.

Large inner diameter

Allows easy integration of a large number of cables and hoses or allows large shaft fittings.

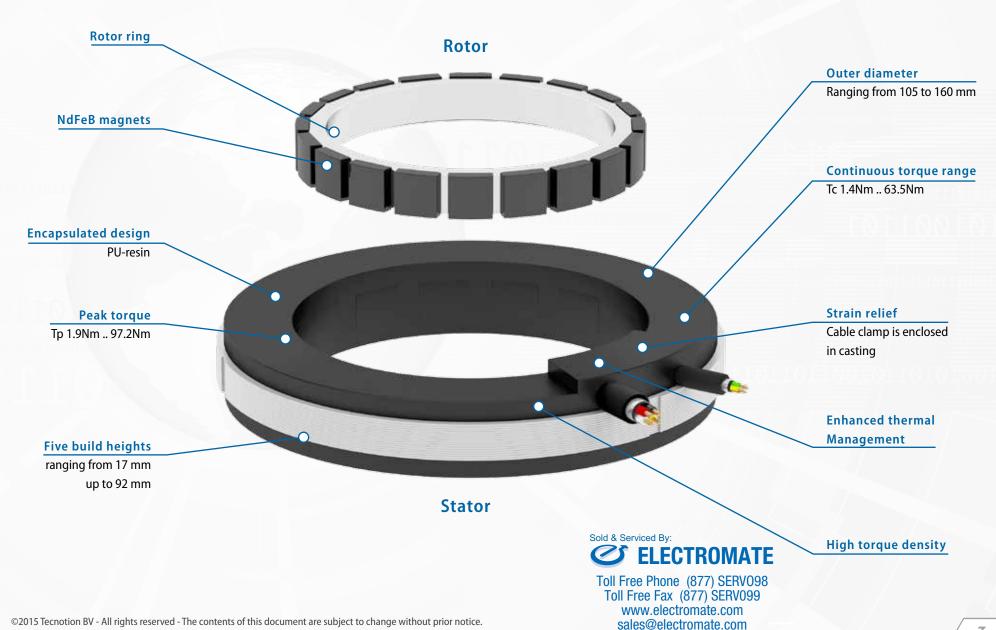
High voltage insulated, up to 300VDC/600VDC busvoltage Enabling the use of a wide range of servo drives, and power supplies.

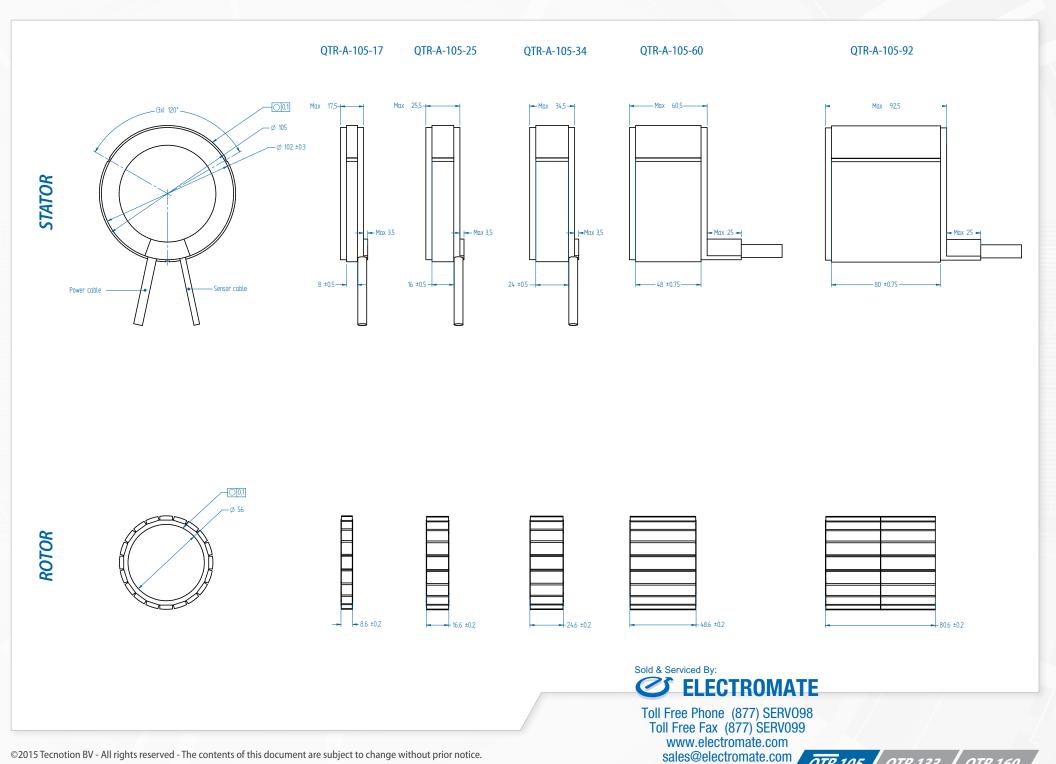
Good product repeatability

All motors have specifications with extremely little variation between them.

100% OC

ld & Serviced Allyproducts are 100% mechanically and electrically tested.


ELECTROMATE


Toll Free Phone (877) SERV098
Toll Free Fax (877) SERV099
www.electromate.com
sales@electromate.com

Torque QTR Motor Series

Properties

TECNOTION THE LINEAR MOTOR COMPANY

Torque QTR-A 105 series

Parameter	Remarks	Symbol	Unit	QTR-A-105-17	QTR-A-105-25	QTR-A-105-34	QTR-A-105-60	QTR-A-105-
Winding type				N	N	N	N	N
Motortype. max voltage ph-ph				3-phase synchronous frameless Torque. 230V _{acrms} (300V _{dc})			420V _{ac rms} (600V _{dc})	
Ultimate Torque @ 20°C/s increase	magnet @ 25°C	Tu	Nm	2.9	6.1	10.6	28.4	47.4
Peak Torque @ 6°C/s increase	magnet @ 25°C	Tp	Nm	1.9	3.9	6.7	18.1	30.2
Ultimate Torque @ 20°C/s increase Peak Torque @ 6°C/s increase Continuous Torque Maximum speed*	coil@100°C	T _c	Nm	1.4	3.2	5.4	12	20.5
Maximum speed*	@Tc	n _{max}	rpm	6918	3579	1866	1386	773
Motor Torque constant	up to lc	Kt	Nm/A	0.297	0.595	1.07	2.86	4.76
Motor constant	coils @ 25°C	K _m	(Nm) ² /W	0.021	0.061	0.127	0.40	0.73
Ultimate Current	magnet @ 70°C	I _u	А	13.8	13.8	13.3	13.5	13.5
Peak Current	magnet @ 25°C	I _p	А	7.56	7.56	7.31	7.37	7.37
Maximum Continuous Current**	coils @ 100°C	I _c	Α	4.64	5.34	5.05	4.19	4.3
Back EMF Phase-Phase _{RMS}		K _e	V/krpm	18	36	65	173	288
Back EMF Phase-Phase Coil Resistance per Phase	coils @ 25°C ex. cable	R	Ω	1.38	1.93	3.02	6.84	10.4
Coil induction per Phase	I < 0.6 lp	L	mH	2.58	4.05	7.93	25.3	40.4
Electrical Time Constant	coils @ 25°C	τ _e	ms	1.9	2.1	2.6	3.7	3.9
Poles		N_{mgn}	nr	20	20	20	20	20
Continuous Power Loss	coils @ 100°C	Pc	W	115	214	300	469	750
Thermal Resistance*** Thermal Time Constant	coils to mount. sfc.	R _{th}	°C/W	0.65	0.35	0.25	0.16	0.1
Thermal Time Constant		τ_{th}	S	21	16	17	25	24
Temperature Cut-off / Sensor				PTC 1kΩ / KTY83-122				
Stator OD		ODs	mm	105	105	105	105	105
Rotor ID		ID_R	mm	56	56	56	56	56
Motor Height		H _{motor}	mm	17	25	34	60	92
Lamination Stack Height		H _{arm}	mm	8	16	24	48	80
Rotor Inertia Stator Mass Rotor Mass		J_R	kg*m²	7.7E-05	1.5E-04	2.2E-04	4.3E-04	7.1E-04
Stator Mass	ex. cables	Ms	g	299	472	746	1476	2366
Rotor Mass		M _R	g	79	146	218	433	719
Total Mass	ex. cables	M _T	g	378	618	964	1909	3085
Cable Mass	all cables	m	g	63	63	63	95	95
Cable Type (Power)	length 0.5 m	d	mm (AWG)	6.5 (20) 9.6 (18)				(18)
Cable Type (Sensor)	length 0.5 m	d	mm (AWG)	4.3 (26)				

^{**}These values are only applicable when the mounting surface is at 20°C and the motor is driven at maximum continuous current. If these values differ in your application, please check our s

* Actual values depend on bus voltage. Please check the T/n diagram in our simulation tool.

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate

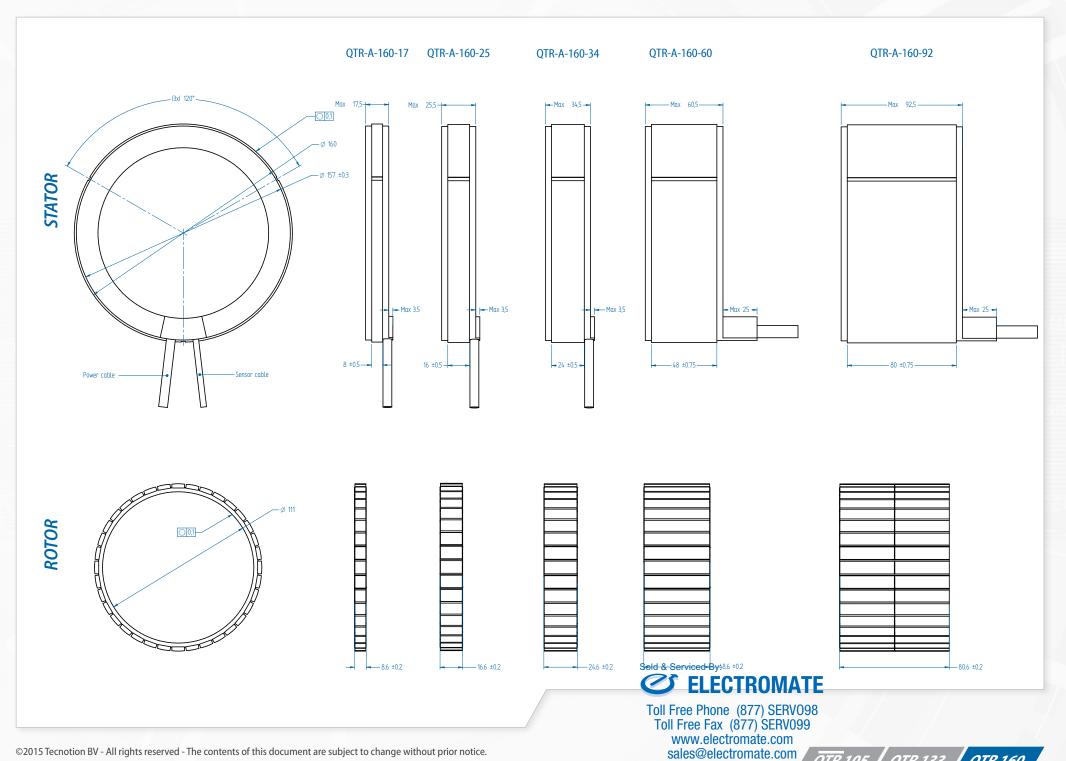

^{***} R_{th} based on radial mounting of rotor lamination stack.

Torque QTR-A 133 series

Parameter	Remarks	Symbol	Unit	QTR-A-133-17	QTR-A-133-25	QTR-A-133-34	QTR-A-133-60	QTR-A-133-9
Winding type				N	N	N	N	N
Motortype. max voltage ph-ph				3-phase synchronous frameless Torque. 230V _{acrms} (300V _{dc})			420V _{ac rms} (600V _{dc})	
Ultimate Torque @ 20°C/s increa	se magnet @ 25°C	Tu	Nm	5.60	11.9	20.6	55.5	92.5
Peak Torque @ 6°C/s increase	magnet @ 25°C	Tp	Nm	3.77	7.5	13.1	35.3	58.9
Peak Torque @ 6°C/s increase Continuous Torque Maximum speed*	coil@100°C	T _c	Nm	2.57	5.86	10	21.9	37.8
Maximum speed*	@Tc	n _{max}	rpm	3477	1779	910	684	363
Motor Torque constant	Up to Ic	Kt	Nm/A	0.58	1.16	2.09	5.57	9.28
Motor constant	coils @ 25°C	K _m	(Nm) ² /W	0.058	0.167	0.344	1.08	1.98
Ultimate Current	magnet @ 70°C	I _u	Α	13.8	13.8	13.3	13.5	13.5
Peak Current	magnet @ 25°C	I _p	А	7.56	7.56	7.31	7.37	7.37
Maximum Continuous Current*	* coils @ 100°C	I _c	А	4.43	5.05	4.77	3.93	4.07
Back EMF Phase-Phase _{RMS} Coil Resistance per Phase		K _e	V/krpm	35	70	126	337	561
Coil Resistance per Phase	coils @ 25°C ex. cable	R	Ω	1.93	2.70	4.23	9.58	14.5
Coil induction per Phase	I < 0.6 lp	L	mH	3.74	5.87	11.5	36.6	58.4
Electrical Time Constant	coils @ 25°C	τ _e	ms	1.94	2.18	2.72	3.83	4.02
Poles		N_{mgn}	nr	28	28	28	28	28
Continuous Power Loss	coils @ 100°C	Pc	W	147	268	375	577	938
Thermal Resistance*** Thermal Time Constant	coils to mount. sfc.	R _{th}	°C/W	0.51	0.28	0.20	0.13	0.08
Thermal Time Constant		τ_{th}	S	23	18	19	29	27
Temperature Cut-off / Sensor				PTC 1kΩ / KTY83-122				
Stator OD		ODs	mm	133	133	133	133	133
Rotor ID		ID_R	mm	84	84	84	84	84
Motor Height		H_{motor}	mm	17	25	34	60	92
Lamination Stack Height		H _{arm}	mm	8	16	24	48	80
Rotor Inertia Stator Mass Rotor Mass		J_R	kg*m²	2.1E-04	4.2E-04	6.2E-04	1.2E-03	2.1E-03
Stator Mass	ex. cables	Ms	g	414	717	1037	2090	3355
Rotor Mass		M _R	g	106	208	309	613	1020
Total Mass	ex. cables	M _T	g	520	925	1346	2703	4375
Cable Mass	all cables	m	g	63	63	63	95	95
Cable Type (Power)	length 0.5 m	d	mm (AWG)	6.5 (20) 9.6 (18)			(18)	
Cable Type (Sensor)	length 0.5 m	d	mm (AWG)	4.3 (26)				

^{**}These values are only applicable when the mounting surface is at 20°C and the motor is driven at maximum continuous current. If these values differ in your application, please check our

 $*\ Actual\ values\ depend\ on\ bus\ voltage.\ Please\ check\ the\ T/\ n\ diagram\ in\ our\ simulation\ tool.$



Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com, 105 QTR 133 QTR 160

QTR-A-133 Stator and rotor shown with a height of 17 mm

^{***} R_{th} based on radial mounting of rotor lamination stack.

Torque QTR-A 160 series

	Parameter	Remarks	Symbol	Unit	QTR-A-160-17	QTR-A-160-25	QTR-A-160-34	QTR-A-160-60	QTR-A-160-92
	Winding type				N	N	N	N	N
Performance	Motortype. max voltage ph-ph				3-phase synchronous frameless Torque. 230V _{ac rms} (300V)			420V _{ac rms} (600V _{dc})	
	Ultimate Torque @ 20°C/s increase	magnet @ 25°C	Tu	Nm	9.26	19.6	34.1	91.6	152.7
	Peak Torque @ 6°C/s increase	magnet @ 25°C	Tp	Nm	6.23	12.5	21.7	58.3	97.2
	Continuous Torque	coil@100°C	T _c	Nm	4.08	9.42	15.7	36.3	63.5
	Maximum speed*	@Tc	n _{max}	rpm	2095	1042	526	385	190
	Motor Torque constant	Up to Ic	K _t	Nm/A	0.96	1.92	3.45	9.20	15.33
	Motor constant	coils @ 25°C	K _m	(Nm) ² /W	0.124	0.353	0.728	2.29	4.19
Electrical	Ultimate Current	magnet @ 70°C	I _u	А	13.8	13.8	13.3	13.5	13.5
	Peak Current	magnet @ 25°C	l _p	А	7.6	7.6	7.3	7.4	7.4
	Maximum Continuous Current**	coils @ 100°C	lc	Α	4.26	4.91	4.56	3.95	4.14
	Back EMF Phase-Phase _{RMS}		K _e	V/krpm	58	116	209	556	927
	Coil Resistance per Phase	coils @ 25°C ex. cable	R	Ω	2.47	3.47	5.45	12.3	18.7
_	Coil induction per Phase	I < 0.6 lp	L	mH	4.89	7.68	15.0	47.9	76.1
	Electrical Time Constant	coils @ 25°C	τ_{e}	ms	1.98	2.21	2.75	3.88	4.07
	Poles		N_{mgn}	nr	36	36	36	36	36
_	Continuous Power Loss	coils @ 100°C	P _c	W	174	326	441	750	1250
Thermal	Thermal Resistance***	coils to mount. sfc.	R_{th}	°C/W	0.43	0.23	0.17	0.1	0.06
The	Thermal Time Constant		τ_{th}	S	25	19	21	29	26
	Temperature Cut-off / Sensor				PTC 1kΩ / KTY83-122				
	Stator OD		OD_S	mm	160	160	160	160	160
ical	Rotor ID		ID_R	mm	111	111	111	111	111
	Motor Height		H_{motor}	mm	17	25	34	60	92
	Lamination Stack height		H_{arm}	mm	8	16	24	48	80
	Rotor Inertia		J_R	kg*m²	4.7E-04	9.2E-04	1.4E-03	2.6E-03	4.5E-03
Mechanical	Stator Mass	ex. cables	M_S	g	527	875	1212	2555	4096
Me	Rotor Mass		M_R	g	138	269	401	754	1321
	Total Mass	ex. cables	M_T	g	665	1144	1613	3309	5417
	Cable Mass	all cables	m	g	63	63	63	95	95
	Cable Type (Power)	length 0.5 m	d	mm (AWG)	6.5 (20)			9.6 (18)	
	Cable Type (Sensor)	length 0.5 m	d	mm (AWG)					

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com_R₁ 105 | QTR 133 | QTR 160

QTR-A-160 Stator and rotor shown with a height of 17 mm

 $[*] Actual \ values \ dependon \ bus \ voltage. \ Please \ check \ the \ T/n \ diagram \ in \ our \ simulation \ tool.$

^{**}These values are only applicable when the mounting surface is at 20°C and the motor is driven at maximum continuous current. If these values differ in your application, please check our s

^{***} R_{th} based on radial mounting of rotor lamination stack.

Additional products

To download our linear motor simulation tool, 3D & CAD files, installation manuals, product specifications and more, visit our website at:

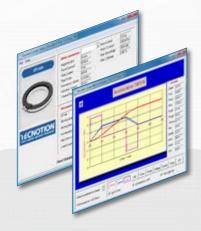
www.tecnotion.com

Product Series

Iron Core & Ironless Motor Series

Tecnotions linear motor series rely on 25 years of linear motor development experience. All motors excel in their force density ratings. They offer continuous force in a range of 36 Newton to 3000 Newton in a surprisingly small package.

Tecnotion can provide linear solutions for most applications which require a strong iron core linear motor or a highly dynamic ironless type linear motor.



Vacuum Series

Outgassing down to 10⁻⁸ mbar

Many years of experience is used in designing and building vacuum coils and magnets. Tecnotion can supply any vacuum linear motor that can match even the strictest vacuum requirements, for instance in the semiconductor industry.

Our vacuum rated ironless linear motors are a specifically designed coil units and magnet yokes for use in high- vacuum, down to 10^8 mBar.

Simulation Tool

Analyze your application

Save precious time by using our FREE Torque motor simulation tool. Our specialized software helps you find the best motor for the application and generate reports within seconds, without having to make time consuming calculations by hand.

The tool will provide you with diagrams for position, velocity, acceleration, jerk, torque, power, voltage, corrent semperature, torque vs. velocity and many provided in the control of t

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

Custom Linear Motors

Motor solutions

Besides the standard catalogue items we offer custom linear motor solutions. Some examples: custom windings, cable confection and vacuum motors for transport and positioning in vacuum.

Besides this Tecnotion offers moving magnet motors and linear actuators, completely designed toward needs. For more information please contact Tecnotion.