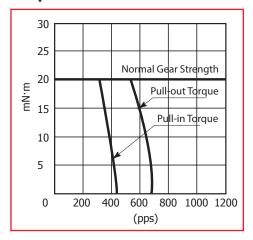


Tin-Can Steppers PFCU25


Specifications

Specification	Unit	PFCU25-24C1G (1/20)	PFCU25-24D1G (1/20)
Excitation Mode	Oc		
Excitation Mode		Full Step (2-2)	
Step Angle	0	0.75	
Steps Per Revolution*		480	
Rated Voltage	V	13.3	5.4
Resistance ¹	Ω	120 ±7%	16 ±7%
Inductance ¹	mH	30 (1 Vrms, 1 Khz)	4.1 (1 Vrms, 1 kHz)
Max. Torque	mN·m	20	
Starting Pulse Rate1*	pps	420 or more (with no load)	
Slewing Pulse Rate1*	pps	680 or more (with no load)	
Operating Temp. Range	°C	-10 to +50	
Temperature Rise*	°C	70	
Weight	g	55	
Gear Ratio, Backlash		1/20, 7° or less	

^{* -} All tin-can motor specifications are based on full-step constant voltage operation

Magnet type: Anisotropic

Torque Curve*

Connector

Applicable Housing: ZHR-5

Applicable Contact: SZH-002T-P0.5

Applicable Wire: AWG 28 to 26 (outer diam-

eter of covered wire: 0.8 to 1.1 mm)

Note 1: Supply voltage 12V ±2% and at a temperature of 20°C ±2% ad relative humidity 65% ±20%. Note 2: Stated terminal voltage is with supply voltage 12V.

Note 3: Stated temperature rise is at the time of saturation.