Gearhead Ordering Information

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Micron products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

NemaTRUE 90* Right Angle Gearheads

Ready for Immediate Delivery

Precision:	13 arc-minutes
Frame Sizes:	23, 34, and 42
Torque Capacity:	up to 2255 in-lb

Ratio Availability: Radial load capacity: Mounting system: 1:1 thru 500:1 up to 650 lb RediMount*

Index	Page
NemaTRUE 90 Size 23 Planetary Gearhead	18
NemaTRUE 90 Size 34 Planetary Gearhead	19
NemaTRUE 90 Size 42 Planetary Gearhead	20
Selection	10
Mounting Tools	84

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Micron products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

NemaTRUE 90* Size 23

Right Angle Gearhead

Ratio	Dimension 'K' in (mm)	Dimension 'L' in (mm)	Backlash (arc-min)	Weight lb (kg)	Efficiency
1:1 to 5:1P	3.11 (79)	4.31 (109.5)	13 max	3.0 (1.4)	95%
5:1T to 50:1	3.79 (96)	4.99 (127)	15 max	3.4 (1.5)	90%
60:1 to 500:1	4.48 (114)	5.68 (144)	15 max	3.8 (1.6)	85%

** AD = Adapter length Adapter length will vary depending on motor.

(TABLE 1) PERFORMANCE SPECIFICATIONS															
Part	Ratio ¹		5,000 HOUR LIF	E	т		10	,000 HC	OUR LIF	E			1	Tors	ional
Number		T,	T,	T,	peak	Tr		1	r,	T,		in lh co	r ² v 10 ⁻⁴	Stiffness	
		(mar 0001)	(3000 rpm)	(5000 rpm)	in lb (Nm)	(1000 rpm)		(3000 rpm)		(5000 rpm)		(ka-cm ²)		in-lb/arc-min	
		in-lb (Nm)	in-lb (Nm)	in-lb (Nm)		in-lb	(Nm)	in-lb	(Nm)	in-lb	(Nm)	(9	,	(Nm/a	rc-min)
NTR23-001	1:1	59 (7)	54 (6)	49 (6)	195 (22)	54	(6)	50	(6)	45	(5)	7.01	(.79)	5.6	(0.6)
NTR23-002	2:1	130 (15)	118 (13)	107 (12)	360 (41)	120	(14)	109	(12)	99	(11)	3.59	(.41)	8.5	(1.0)
NTR23-003	3:1	83 (9)	75 (9)	68 (8)	270 (31)	76	(9)	70	(8)	63	(7)	3.09	(.35)	9.6	(1.1)
NTR23-004	4:1	61 (7)	56 (6)	50 (6)	238 (27)	56	(6)	51	(6)	46	(5)	2.87	(.32)	10.1	(1.1)
NTR23-005P	5:1P	50 (6)	46 (5)	41 (5)	180 (20)	46	(5)	42	(5)	38	(4)	2.81	(.32)	10.3	(1.2)
NTR23-005T	5:1T	179 (20)	153 (17)	138 (16)	366 (41)	175	(20)	132	(15)	112	(13)	3.69	(.42)	10.3	(1.2)
NTR23-006	6:1	153 (17)	130 (15)	126 (14)	366 (41)	149	(17)	120	(14)	116	(13)	3.67	(.41)	6.7	(0.8)
NTR23-009	9:1	97 (11)	83 (9)	80 (9)	289 (33)	95	(11)	76	(9)	74	(8)	3.08	(.35)	8.5	(1.0)
NTR23-010	10:1	157 (18)	144 (16)	130 (15)	366 (41)	155	(18)	138	(16)	120	(14)	3.48	(.39)	6.6	(0.7)
NTR23-012	12:1	72 (8)	61 (7)	59 (7)	252 (28)	70	(8)	56	(6)	55	(6)	2.95	(.33)	9.3	(1.1)
NTR23-015	15:1	100 (11)	91 (10)	83 (9)	297 (34)	99	(11)	88	(10)	76	(9)	2.89	(.33)	9.8	(1.1)
NTR23-020	20:1	74 (8)	67 (8)	61 (7)	366 (41)	73	(8)	64	(7)	56	(6)	2.76	(.31)	9.3	(1.0)
NTR23-025	25:1	60 (7)	55 (6)	50 (6)	198 (22)	60	(7)	53	(6)	46	(5)	2.71	(.31)	9.8	(1.1)
NTR23-030	30:1	102 (12)	98 (11)	94 (11)	305 (34)	102	(11)	96	(11)	90	(10)	2.83	(.32)	8.0	(0.9)
NTR23-040	40:1	75 (9)	72 (8)	69 (8)	263 (30)	75	(8)	71	(8)	67	(8)	2.69	(.30)	9.0	(1.0)
NTR23-050	50:1	62 (7)	59 (7)	57 (6)	203 (23)	61	(7)	58	(7)	55	(6)	2.64	(.30)	9.6	(1.1)
NTR23-060	60:1	163 (18)	161 (18)	158 (18)	366 (41)	163	(18)	160	(18)	157	(18)	3.68	(.42)	6.5	(0.7)
NTR23-075	75:1	104 (12)	102 (12)	100 (11)	311 (35)	103	(12)	101	(11)	99	(11)	2.95	(.33)	8.4	(0.9)
NTR23-090	90:1	104 (12)	102 (12)	101 (11)	313 (35)	103	(12)	102	(11)	100	(11)	3.09	(.35)	8.3	(0.9)
NTR23-100	100:1	163 (18)	162 (18)	161 (18)	366 (41)	163	(18)	161	(18)	160	(18)	3.50	(.40)	6.5	(0.7)
NTR23-120	120:1	76 (9)	75 (9)	74 (8)	270 (31)	76	(9)	75	(8)	73	(8)	2.96	(.33)	9.2	(1.0)
NTR23-125	125:1	63 (7)	62 (7)	60 (7)	207 (23)	62	(7)	61	(7)	60	(7)	2.76	(.31)	9.7	(1.1)
NTR23-150	150:1	104 (12)	103 (12)	102 (12)	316 (36)	104	(12)	103	(12)	102	(11)	2.91	(.33)	8.4	(0.9)
NTR23-200	200:1	164 (19)	163 (18)	162 (18)	366 (41)	164	(18)	163	(18)	162	(18)	3.43	(.39)	6.1	(0.7)
NTR23-250	250:1	63 (7)	62 (7)	62 (7)	207 (23)	63	(7)	62	(7)	61	(7)	2.72	(.31)	9.7	(1.1)
NTR23-300	300:1	104 (12)	104 (12)	103 (12)	319 (36)	104	(12)	104	(12)	103	(12)	2.84	(.32)	8.0	(0.9)
NTR23-400	400:1	77 (9)	76 (9)	76 (9)	274 (31)	77	(9)	76	(9)	76	(9)	2.71	(.31)	9.0	(1.0)
NTR23-500	500:1	63 (7)	63 (7)	62 (7)	207 (23)	63	(7)	63	(7)	62	(7)	2.66	(.30)	9.6	(1.1)

¹ Ratios are exact, higher ratios are also available, consult factory.

Tr = Rated output torque at rated speed for specific hours of life.

J = Mass moment of inertia reflected to the input shaft (including pinion assembly)

T_{peak} = Allowable momentary peak torque for emergency stop or heavy shock loading.

CONTRACT CON

Page 18

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Micron products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

English

* Trademark of Danaher Motion. DANAHER MOTION is registered in the U.S. Patent and Trademark Office and in other countries.

NemaTRUE 90* Size 34 **Right Angle Gearhead**

English

1/8" (3.2) AMERICAN

STD SQUARE KEY

Γ (14.1)

4

3.54 SQ.

(90)

.556

ŇØ

Ň

Ratio	Dimension 'K' in (mm)	Dimension 'L' in (mm)	Backlash (arc-min)	Weight lb (kg)	Efficiency
1:1 to 5:1P	3.99 (101)	5.76 (146)	13 max	6.0 (2.7)	95%
5:1T to 50:1	4.89 (124)	6.66 (169)	15 max	7.4 (3.4)	90%
60:1 to 500:1	5.79 (147)	7.56 (192)	15 max	8.8 (4.0)	85%

** AD = Adapter length Adapter length will vary depending on motor.

Ø

Ø.

	(TABLE 1) PERFORMANCE SPECIFICATIONS																		
Part	Ratio ¹			5,000 H	OUR LIF	E					10	,000 H	OUR LIF	E				Tors	ional
Number	natio	Т	ſ,	1	- r	T	r	T _p	eak	1	r		T _r	T	r		J	Stif	fness
		(1000	rpm)	(3000	rpm)	(5000	rpm)		<i></i>	(1000) rpm)	(300) rpm)	(5000) rpm)	in-lb-s	ec ² x 10 ⁻⁴	in-lb/	arc-min
		in-lb	(Nm)	in-lb	(Nm)	in-lb	(Nm)	in-lb	(Nm)	in-lb	(Nm)	in-lb	(Nm)	in-lb	(Nm)	(кд-	·CIII ⁻)	(Nm/a	rc-min)
NTR34-001	1:1	168	(19)	153	(17)	139	(16)	493	(56)	155	(18)	142	(16)	128	(14)	27.5	(3.11)	12.6	(1.4)
NTR34-002	2:1	381	(43)	348	(39)	315	(36)	1113	(126)	352	(40)	321	(36)	291	(33)	14.1	(1.59)	19.1	(2.2)
NTR34-003	3:1	251	(28)	229	(26)	207	(23)	905	(102)	232	(26)	212	(24)	192	(22)	12.1	(1.37)	21.5	(2.4)
NTR34-004	4:1	192	(22)	176	(20)	159	(18)	695	(79)	178	(20)	162	(18)	147	(17)	11.2	(1.27)	22.6	(2.5)
NTR34-005P	5:1P	142	(16)	129	(15)	117	(13)	581	(66)	131	(15)	119	(13)	108	(12)	11.0	(1.25)	23.1	(2.6)
NTR34-005T	5:1T	508	(57)	432	(49)	420	(47)	1113	(126)	497	(56)	399	(45)	387	(44)	14.5	(1.64)	23.1	(2.6)
NTR34-006	6:1	448	(51)	381	(43)	370	(42)	1113	(126)	439	(50)	352	(40)	342	(39)	14.4	(1.63)	15.0	(1.7)
NTR34-009	9:1	296	(33)	251	(28)	244	(28)	986	(111)	289	(33)	232	(26)	225	(25)	12.1	(1.37)	19.0	(2.1)
NTR34-010	10:1	462	(52)	422	(48)	381	(43)	1113	(126)	456	(52)	404	(46)	352	(40)	13.7	(1.54)	14.8	(1.7)
NTR34-012	12:1	226	(26)	192	(22)	187	(21)	752	(85)	221	(25)	178	(20)	173	(19)	11.6	(1.31)	20.9	(2.4)
NTR34-015	15:1	305	(34)	278	(31)	251	(28)	1018	(115)	301	(34)	266	(30)	232	(26)	11.3	(1.28)	21.9	(2.5)
NTR34-020	20:1	233	(26)	213	(24)	192	(22)	1113	(126)	230	(26)	204	(23)	178	(20)	10.8	(1.22)	20.8	(2.4)
NTR34-025	25:1	172	(19)	157	(18)	142	(16)	635	(72)	169	(19)	150	(17)	131	(15)	10.6	(1.20)	21.9	(2.5)
NTR34-030	30:1	311	(35)	298	(34)	285	(32)	1045	(118)	309	(35)	292	(33)	275	(31)	11.1	(1.25)	17.9	(2.0)
NTR34-040	40:1	238	(27)	228	(26)	218	(25)	792	(89)	237	(27)	224	(25)	210	(24)	10.6	(1.19)	20.2	(2.3)
NTR34-050	50:1	175	(20)	168	(19)	160	(18)	653	(74)	174	(20)	165	(19)	155	(18)	10.4	(1.17)	21.4	(2.4)
NTR34-060	60:1	479	(54)	472	(53)	465	(53)	1113	(126)	478	(54)	469	(53)	460	(52)	14.4	(1.63)	14.5	(1.6)
NTR34-075	75:1	315	(36)	310	(35)	305	(34)	1080	(122)	314	(36)	308	(35)	301	(34)	11.6	(1.31)	18.7	(2.1)
NTR34-090	90:1	316	(36)	311	(35)	307	(35)	1085	(123)	315	(36)	309	(35)	304	(34)	12.1	(1.37)	18.6	(2.1)
NTR34-100	100:1	480	(54)	476	(54)	472	(53)	1113	(126)	479	(54)	474	(54)	469	(53)	13.7	(1.55)	14.6	(1.7)
NTR34-120	120:1	242	(27)	238	(27)	235	(27)	817	(92)	241	(27)	237	(27)	232	(26)	11.6	(1.31)	20.7	(2.3)
NTR34-125	125:1	178	(20)	175	(20)	172	(19)	666	(75)	177	(20)	173	(20)	169	(19)	10.8	(1.23)	21.8	(2.5)
NTR34-150	150:1	317	(36)	314	(35)	311	(35)	1096	(124)	316	(36)	313	(35)	309	(35)	11.4	(1.29)	18.7	(2.1)
NTR34-200	200:1	481	(54)	479	(54)	477	(54)	1113	(126)	481	(54)	478	(54)	475	(54)	13.5	(1.52)	13.6	(1.5)
NTR34-250	250:1	178	(20)	177	(20)	175	(20)	675	(76)	178	(20)	176	(20)	174	(20)	10.7	(1.21)	21.8	(2.5)
NTR34-300	300:1	317	(36)	316	(36)	315	(36)	1107	(125)	317	(36)	315	(36)	314	(35)	11.1	(1.26)	17.9	(2.0)
NTR34-400	400:1	243	(27)	242	(27)	241	(27)	832	(94)	243	(27)	241	(27)	240	(27)	10.6	(1.20)	20.2	(2.3)
NTR34-500	500:1	179	(20)	178	(20)	177	(20)1d &	Service 680	(77)	179	(20)	178	(20)	177	(20)	10.4	(1.18)	21.4	(2.4)
								/ FLEG	КЛМА										

Toll Free Phone (877) SERV098

Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

¹ Ratios are exact, higher ratios are also available, consult factory.

Tr = Rated output torque at rated speed for specific hours of life. J = Mass moment of inertia reflected to the input shaft (including pinion assembly)

 $T_{\text{peak}} = \text{Allowable momentary peak torque for emergency stop or heavy shock loading.}$

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Microaducts for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

NemaTRUE 90* Size 42 Right Angle Gearhead

Ratio	Dimension 'K' in (mm)	Dimension 'L' in (mm)	Backlash (arc-min)	Weight lb (kg)	Efficiency
1:1 to 5:1P	5.40 (137)	7.67 (195)	13 max	12 (5.4)	95%
5:1T to 50:1	6.63 (168.4)	8.90 (226)	15 max	14.8 (6.7)	90%
60:1 to 500:1	7.87 (200)	10.13 (257)	15 max	17.6 (8.0)	85%

^{**} AD = Adapter length Adapter length will vary depending on motor.

	(TABLE 1) PERFORMANCE SPECIFICATIONS																		
Part	Ratio ¹		!	5,000 HO	OUR LIFI	:					10	,000 HC	OUR LIF	E			i	Tors	ional
Number		1	- ,	Т	r	T	r	l Ip	eak	1	- r	-	T _r	T	r	in lb co	J	Stiff	iness
		(1000	rpm)	(3000	rpm)	(5000	rpm)	in lh	(Nm)	(1000	rpm)	(3000) rpm)	(5000	rpm)	(ka-	cm^2)	in-lb/a	arc-min
		in-lb	(Nm)	in-lb	(Nm)	in-lb	(Nm)		(1111)	in-lb	(Nm)	in-lb	(Nm)	in-lb	(Nm)	(Ng	ciii /	(Nm/a	rc-min)
NTR42-001	1:1	496	(56)	452	(51)	409	(46)	1620	(183)	458	(52)	418	(47)	378	(43)	46.7	(5.28)	15.0	(1.7)
NTR42-002	2:1	885	(100)	808	(91)	730	(83)	2255	(255)	817	(92)	746	(84)	674	(76)	23.9	(2.71)	24.7	(2.8)
NTR42-003	3:1	687	(78)	627	(71)	567	(64)	2039	(230)	635	(72)	579	(65)	524	(59)	20.6	(2.33)	28.0	(3.2)
NTR42-004	4:1	458	(52)	418	(47)	378	(43)	1584	(179)	423	(48)	386	(44)	349	(39)	19.1	(2.16)	29.4	(3.3)
NTR42-005P	5:1P	343	(39)	313	(35)	283	(32)	1305	(147)	317	(36)	289	(33)	261	(30)	18.8	(2.12)	30.0	(3.4)
NTR42-005T	5:1T	1346	(152)	1117	(126)	958	(108)	2255	(255)	1262	(143)	907	(102)	778	(88)	24.6	(2.78)	30.0	(3.4)
NTR42-006	6:1	1041	(118)	885	(100)	859	(97)	2255	(255)	1018	(115)	817	(92)	794	(90)	24.5	(2.77)	20.1	(2.3)
NTR42-009	9:1	808	(91)	687	(78)	667	(75)	2241	(253)	791	(89)	635	(72)	616	(70)	20.5	(2.32)	25.1	(2.8)
NTR42-010	10:1	1072	(121)	979	(111)	885	(100)	2255	(255)	1059	(120)	938	(106)	817	(92)	23.2	(2.63)	20.1	(2.3)
NTR42-012	12:1	538	(61)	458	(52)	444	(50)	1728	(195)	526	(59)	423	(48)	410	(46)	19.6	(2.22)	27.5	(3.1)
NTR42-015	15:1	832	(94)	760	(86)	687	(78)	2255	(255)	822	(93)	728	(82)	635	(72)	19.3	(2.18)	28.8	(3.3)
NTR42-020	20:1	554	(63)	506	(57)	458	(52)	2255	(255)	547	(62)	485	(55)	423	(48)	18.4	(2.08)	27.5	(3.1)
NTR42-025	25:1	416	(47)	379	(43)	343	(39)	1458	(165)	410	(46)	364	(41)	317	(36)	18.0	(2.04)	28.8	(3.2)
NTR42-030	30:1	851	(96)	814	(92)	778	(88)	2255	(255)	845	(96)	798	(90)	752	(85)	18.9	(2.13)	24.6	(2.8)
NTR42-040	40:1	566	(64)	542	(61)	518	(59)	1836	(207)	563	(64)	532	(60)	500	(57)	18.0	(2.03)	27.2	(3.1)
NTR42-050	50:1	425	(48)	407	(46)	388	(44)	1499	(169)	422	(48)	399	(45)	375	(42)	17.6	(1.99)	28.5	(3.2)
NTR42-060	60:1	1111	(126)	1095	(124)	1080	(122)	2255	(255)	1109	(125)	1089	(123)	1069	(121)	24.6	(2.78)	19.7	(2.2)
NTR42-075	75:1	861	(97)	847	(96)	832	(94)	2255	(255)	859	(97)	841	(95)	822	(93)	19.7	(2.22)	25.0	(2.8)
NTR42-090	90:1	863	(97)	851	(96)	838	(95)	2255	(255)	861	(97)	845	(96)	830	(94)	20.6	(2.33)	24.8	(2.8)
NTR42-100	100:1	1114	(126)	1105	(125)	1095	(124)	2255	(255)	1113	(126)	1101	(124)	1089	(123)	23.3	(2.64)	19.9	(2.2)
NTR42-120	120:1	574	(65)	566	(64)	558	(63)	1897	(214)	573	(65)	563	(64)	552	(62)	19.7	(2.23)	27.3	(3.1)
NTR42-125	125:1	430	(49)	423	(48)	416	(47)	1539	(174)	429	(48)	420	(47)	410	(46)	18.4	(2.08)	28.7	(3.2)
NTR42-150	150:1	865	(98)	858	(97)	851	(96)	2255	(255)	864	(98)	855	(97)	845	(96)	19.4	(2.19)	25.0	(2.8)
NTR42-200	200:1	1116	(126)	1112	(126)	1107	(125)	2255	(255)	1116	(126)	1110	(125)	1104	(125)	22.9	(2.59)	19.4	(2.2)
NTR42-250	250:1	432	(49)	428	(48)	425	(48)	1562	(176)	431	(49)	427	(48)	422	(48)	18.1	(2.05)	28.7	(3.2)
NTR42-300	300:1	867	(98)	863	(98)	860	(97)	2255	(255)	866	(98)	862	(97)	857	(97)	18.9	(2.14)	24.6	(2.8)
NTR42-400	400:1	577	(65)	575	(65)	572	(65)	1944	(220)	577	(65)	574	(65)	571	(64)	18.1	(2.04)	27.1	(3.1)
NTR42-500	500:1	433	(49)	431	(49)	429	(48)	sti580ervi	≈d(61/:78)	433	(49)	430	(49)	428	(48)	17.7	(2.00)	28.5	(3.2)
				•		•		0	LECTR	UMATE				•		•		-	

¹ Ratios are exact, higher ratios are also available, consult factory.

Page 20

Tr = Rated output torque at rated speed for specific hours of life.

J = Mass moment of inertia reflected to the input shaft (including pinion assembly)

Tpeak = Allowable momentary peak torque for emergency stop or heavy shock loading.

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Micron products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

English

Radial and Axial Load Ratings (Table 2)

These graphs display the allowable radial load at a given distance (X) from the mounting surface based on an L_{10} life of 10,000 hours for the mean output speed, $n_{mout} = \frac{n_m}{2}$, as described on page 10.

NTR23 Radial Load Ratings

NTR23 Axial Load Ratings

Speed (rpm)	Axial Load, F _a lb _f (N)							
50	250	(1110)						
100	200	(890)						
250	150	(670)						
500	120	(530)						
1000	90	(400)						

NTR34 Radial Load Ratings

X Fr Fr Fr Fa

NTR34 Axial Load Ratings

Speed (rpm)	Axial I Ib _f	Load, F _a (N)
50	340	(1510)
100	270	(1200)
250	200	(890)
500	160	(710)
1000	130	(580)

NTR42 Radial Load Ratings

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Micron products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement

Mounting Tools Micrometer Adjustable Torque Wrench Series

Torque Wrench Ordering Information

To ensure that the proper torque is applied to the gearhead pinion assembly, Danaher Motion offers a complete line of easy to use torque wrenches. To order a torque wrench, ask for the corresponding part number along with your gearhead order.

Gearhead Model	Gearhead Frame Size	Torque Wrench Part Number
	23 / 60	TW-060
NemaTRUE*	34 / 90	TW-090
	42 / 115	TW-115
	23	TW-060
NemaTRUE 90*	34	TW-090
	42	TW-115
	60	TW-060
DuraTRUE*	90	TW-090
DuraTRUE 90*	115	TW-115
	142	TW-142
	60	TW-006
	75	TW-075
UltraTRUE*	90	TW-075
UltraTRUE 90*	100	TW-010
	115	TW010
	140	TW-014
	180	TW-018
	100	TW-010
EverTRUE*	140	TW-014
	180	TW-018
EQ*	23 / 60	TW-060

Sold & Serviced By: ELECTROMATE Toll Free Phone (877) SERV098 Toll Free Page (877) SERV098

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Microducts for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

UltraTRUE* output cage assembly

DuraTRUE* in-line planetary gearhead

True Planetary* Gearheads offer. . .

- High Torque to Size Ratio allows compact design
- Low Backlash eliminates positioning errors due to lost motion
- Inertia Matching keeps servo system stable and in control
- High Rigidity optimizes system response
- Self Re-lubrication eliminates costly maintenance and downtime
- High Radial Load Capacity mount pulleys and pinions directly on the output shaft

Page 6

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Micron products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacem

Helical Crowned True Planetary* Gearing offers.....

- High Torque Capacity
- Low Backlash
- Smooth Operation
- Greater Load Sharing
- Whisper Quiet

Output housing and helical internal gear are machined from a single piece of high strength steel

Helical gears are known for their quiet and smooth operation along with their ability to transmit higher loads than spur gears. Both of these features of helical gearing result from the improved contact ratio (effective teeth in mesh) over spur gears. Crowning is a modification to the gear tooth profile which optimizes gear mesh alignment. It also enhances distribution of loading on the tooth flank, thereby reducing high stress regions which can result in surface pitting.

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Micron products for a specific application. While detective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

UltraTRUE in-line planetary gearhead*

Planetary gearheads are often selected for high precision motion control applications which require a high torque to volume ratio, high torsonial stiffness and low backlash. Until now, these attributes have been sufficient to meet the requirements of the market. Danaher Motion has designed a high torque, whisper quiet helical gearhead to meet the recent improvements in servo motor technology.

Danaher Motion engineers accomplished this by combining the positive attributes of gear crowning and helical gearing with the planetary construction to create the smoothest operating gearhead on the market.

UltraTRUE 90 right angle planetary gearhead*

Page 7

* Trademark of Danaher Motion. DANAHER MOTION is registered in the U.S. Patent and Trademark Office and in other countries.

PowerTRUE* right angle gearset

Right angle gear meshes are typically limited to ratios from 1:1 to 3:1 when using standard bevel gears. Compared to these designs, the PowerTRUE 90 gear increases the ratio range to 5:1.

The key to higher torque density is a unique tooth design, created by complex machining made practical with advanced CNC equipment and software. In the design,multiple teeth in the face gear simultaneously mesh with a standard involute pinion. The continuous tooth engagement yields a high contact ratio between the gear and the pinion, boosting torques to new levels and efficiency to 98%.

PowerTRUE* Right Angle Gearheads offer.....

- Lower backlash accomplished through single axis mesh adjustment
- A compact right angle design utilizing a high-tech face gear
- Whisper quiet operation due to high contact ratio
- Mesh ratios from 1:1 to 5:1
- 98% efficiency

CNC Machining of a PowerTRUE* right angle gear

Computerized mapping of gear tooth profile

Advanced software enables stress analysis of PowerTRUE tooth profile

> ©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Micro Poducts for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

Exploded view of RediMount mounting system

Mounting Instructions

1- Slide the provided sleeve into the hub and align the slot in the bushing with the slot in the hub.

2- Set the motor on a work surface or hold fixture with the output shaft facing straight up. If there is a key on the motor, remove it and align the keyway with the slot in the hub. Slide the gearhead down onto the motor shaft.

3- Rotate the hub to align the input housing access holes with the hub clamping bolts.

4 - Using a torque wrench tighten the hub bolts to the pre-torque value indicated in the table.

5 - Bolt the motor to the gearhead with the bolts provided.

6 - Gradually tighten the hub bolts in three steps, increasing the torque each time until reaching the final tightening torque in the table.

Close-up view of the bearing system and hub sleeve which accommodates various motor shaft diameters.

RediMount* Motor Mounting System

- Self-aligning hub Maintains concentricity between motor shaft and gearhead
- Pre-installed pinion Eliminates pinion setting procedure
- Modular design Allows gearhead and input housing to be stocked separately
- Flexibility Allows easy changeover to alternate motors
- Interchangeability Same RediMount system is used throughout 7 product lines

		Hub Bolt Tigh	tening Torque	es					
Gearhead Model	Gearhead Frame Size	Pre-Tighten in-Ib	ing Torque Nm	Final Tightening Torque in-lb Nm					
NemaTRUE*	23	2	.2	39	4.4				
NemaTRUE 90*	34	4	.4	76	8.5				
	42	16	1.8	316	36.0				
	60	2	.2	39	4.4				
DuraTRUE*	90	4	.4	76	8.5				
DuraTRUE 90*	115	16	1.8	316	36.0				
	142	32	3.6	636	72.0				
	60	2	.2	39	4.4				
UltraTRUE*	75/90	4	.4	76	8.5				
UltraTRUE 90*	10/115	16	1.8	316	36.0				
	140	32	3.6	636	72.0				
	180	55	6.3	1104	125.0				

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Micron products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

Page 9

Step 1: Select the required precision class and gearhead configuration (in-line or right angle).

Step 2: Select the proper gearhead using exact or general method.

For continuous duty applications, please contact Applications Engineering.

General Method:

Required Gearhead Torque (T_r)

(1)
$$T_r = T_{M^*} \times i \times e$$

where: $T_{M^*} = \text{continuous torque of motor}$
 $i = \text{gearhead ratio}$
 $e = \text{efficiency of gearhead}$

Since many motors are capable of exceeding their continuous torque rating for extended lengths of time, the value for T_M will only provide a starting point for gearhead selection. Only use the general method if the continuous motor rating is not exceeded in the application.

ratio

Exact Method

Motion Profile

(2)
$$n_m = \frac{n_{1m}t_1 + n_{2m}t_2 + n_{3m}t_3 + \dots + n_{nm}t_n}{t_t}$$

$$t_t = t_1 + t_2 + t_3 + \dots + t_n$$

Equivalent torque (T_{FO})

3)
$$T_{EQ} = \underbrace{8.7}_{T_1} T_1^{s_2} \underbrace{n_{1m}t_1}_{n_mt_t} + T_2^{s_2} \underbrace{n_{2m}t_2}_{n_mt_t} + T_3^{s_2} \underbrace{n_{3m}t_{3+...}}_{n_mt_t} + T_n^{s_2} \underbrace{n_{nm}t_n}_{n_mt_t}$$

Modified equivalent torque (T_{EOm})

(4) $T_{EQm} =$ T_{EO} Q where Q is:

-	
Q	# of cycles/hr
1	>0
.9	>1000
.7	>2500
.5	>5000

©2003 Danaher Motion, Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement

* Trademark of Danaher Motion. DANAHER MOTION is registered in the U.S. Patent and Trademark Office and in other countries.