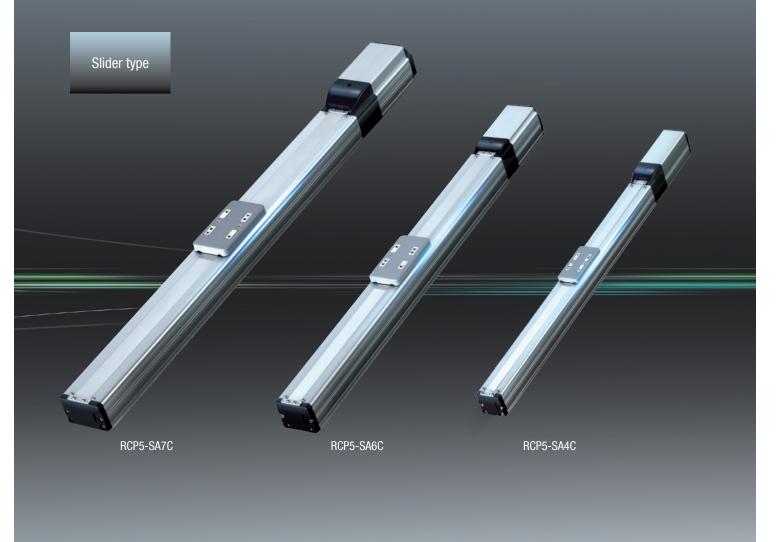


RCP5


ROBO Cylinder with Battery-less Absolute Encoder as Standard Equipment

Introducing the RCP5 series actuator with battery-less absolute encoder, realizing the convenience of an absolute encoder along with the cost and simplicity of an incremental encoder

The battery-less absolute encoder is an innovative encoder requiring no hassle or cost of battery replacement or adjustment associated therewith (patent pending), as rotational position data is recognized by a combination of gears to make the battery, which has been a required component of any traditional absolute encoder, no longer necessary. This encoder is ideal for the automobile industry and other production facilities where many absolute type actuators are used.

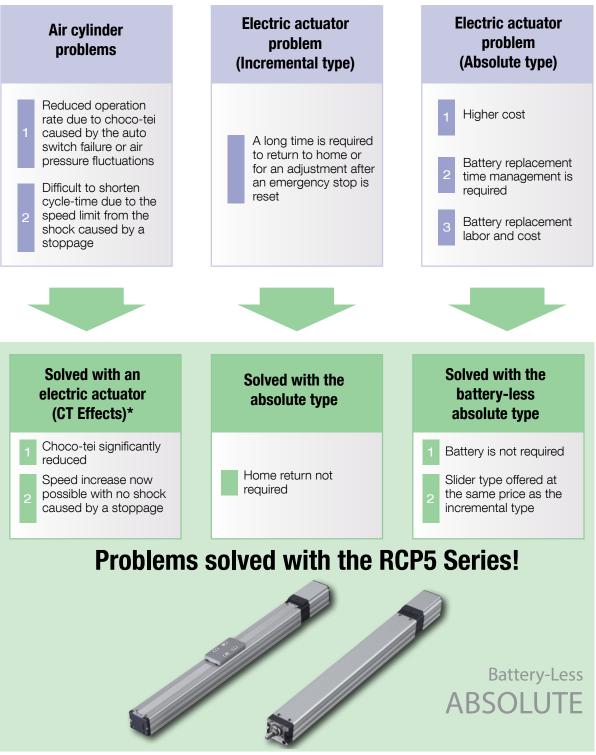
The Industry's First

Electric Actuator with Built-in Battery-less Absolute Encoder

RCP5-SA4C (with Battery-less Absolute Encoder)

Standard price

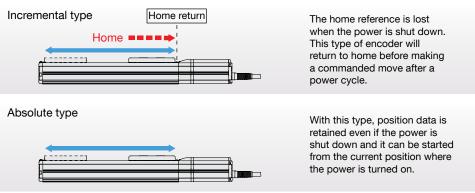
Controller and cables are sold separately.



The ROBO Cylinder is Easy to Use!!!

No More Problems

Shop-Floor Problems and Solutions


* The "CT Effects" refer to increased production output per unit time with "shorter cycle time" and "reduced choco-tei" achieved by re-examining the devices that are part of automation equipment.

Battery-less absolute

What is an absolute encoder?

Advantages of an absolute encoder

Home return is not required, which means reduced amount of labor and time required for adjustment when starting up the device. The amount of time required is reduced for adjustment to restart the device after an emergency stop.

What is a battery-less absolute encoder?

A battery-less absolute encoder is an absolute encoder that verifies the current position based on the interlocked gear position. On conventional absolute encoders, the current position was stored by using a battery. The battery-less type is now available and a battery to store data is no longer required.

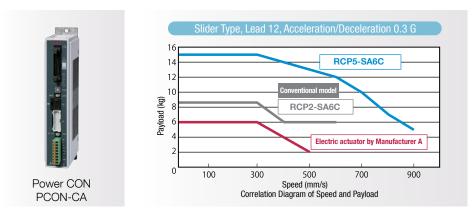
Advantages of a battery-less absolute encoder

Advantage 1:More economical with no cost associated with battery replacement.Advantage 2:Battery replacement management is no longer required.
Labor for replacement work is also no longer required.Advantage 3:Battery installation space is not required.Advantage 4:Operation can resume with no adjustment required even when the cable between the
controller and the actuator is replaced because the positional information is read each time.Advantage 5:No external sensor, such as a sensor to check the origin, is required since home return is
not necessary.Advantage 6:IAI's slider type, even with the battery-less absolute encoder, is offered for the same
price as the conventional incremental type.

Service life of a battery-less absolute encoder

The mechanical configuration of the battery-less absolute encoder offers a service life that is approximately four times the actuator guide's standard rating. Furthermore, it can be used with a sense of security because it will output an error when a certain amount of wear in the gear section is detected.

The ROBO Cylinder is Easy to Use!!!



1.5 times higher maximum speed and double the payload when combined with a Power CON

Shorter Takt Time Significantly Boosts the Productivity of Your System

When the new controller <Power CON> is equipped with our newly developed high-output driver (patent pending) is used, the maximum speed increases significantly by up to 1.5 times the levels achievable with IAI's conventional models, while the payload is greater by up to twice (*). In addition to these amazing improvements in specifications, the maximum speed does not drop as much even when the payload increases due to increased torque with the high speed motor, meaning that the dynamic performance equivalent to that of a higher-class model can be achieved at lower cost.

(*) The specific rates of improvement vary depending on the model.

Multi-axis type is now available with a Power CON

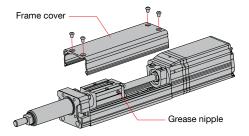
The MSEP controller, now with a Power CON, is capable of operating the RCP5 in up to four-axis applications at high speeds 1.5 times the level achievable with the conventional models, and at a least double the dynamic payload performance. Additionally, the standard type not combined with a Power CON can operate the RCP5 in up to eight-axis applications. Furthermore, it can move to a specified value via a field network.

*Eight-axis application if a Power CON (high-output capable) is NOT used.

The rod type can carry radial loads.

The rod type <Radial Cylinder> with a built-in guide mechanism can carry radial loads over a long stroke of up to 800mm.

The rod type <Radial Cylinder> has a built-in ball circulating type linear guide mechanism in the actuator to carry radial loads applied to the rod over a long stroke of up to 800mm. The actuator can also support a radial load applied at a position offset from the center of the rod.



Feature

Easier to Maintain

Greasing has become easier, as the ball screw and guide can be lubricated at the same time from the two grease nipples on the left and right, accessible when the frame cover is removed.

* This feature is not available for RCP5-RA8/RA10.

The ROBO Cylinder is Easy to Use!!!

Model type

Slider type	\rightarrow P.11

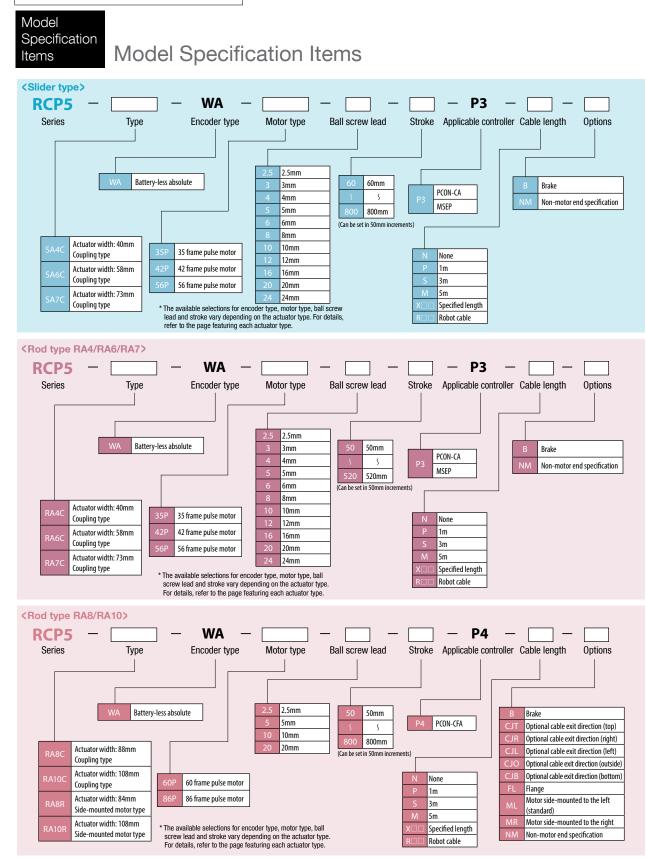
Туре	External view	Actuator	Actuator	Stroke			Maximum payload (kg)		Page				
туре	External view	width	(mm)	lead (mm)	speed (mm/s)	Horizontal	Vertical	i age					
				16	1260	4	1						
CAAC	3	40mm		50~500	10	785	10	2.25	D 11				
SA4C			50~500	5	390	12	4.5	→P.11					
	w			2.5	195	12	9						
	N	58mm							20	1440 <1280>	10	1	
SA6C										50~800	12	900	15
SAOC				50~800	50-500	50-800	6	450	25	6	→P.13		
	W			3	225	25	16						
				24	1200	20	3						
SA7C	9		50~800	16	980 <840>	40	8	→P.15					
SH/C				8	490	45	16						
	v	73mm		4	245 <210>	45	25						

Rod type \rightarrow P.17

Maximum Maximum payload (kg) Actuator Stroke Ball screw Туре External view speed Page width (mm) lead (mm) Horizontal Vertical (mm/s)1120 <840> 1.5 16 6 10 700 15 2.5 RA4C 60~410 →P.17 5 350 28 5 40mm 2.5 175 10 40 20 800 6 1.5 12 700 25 4 RA6C 65~415 →P.19 6 450 40 10 58mm 3 225 20 60 24 800 <600> 20 3 16 700 <560> 50 8 RA7C 70~520 →P.21 8 420 60 18 73mm 4 210 80 28

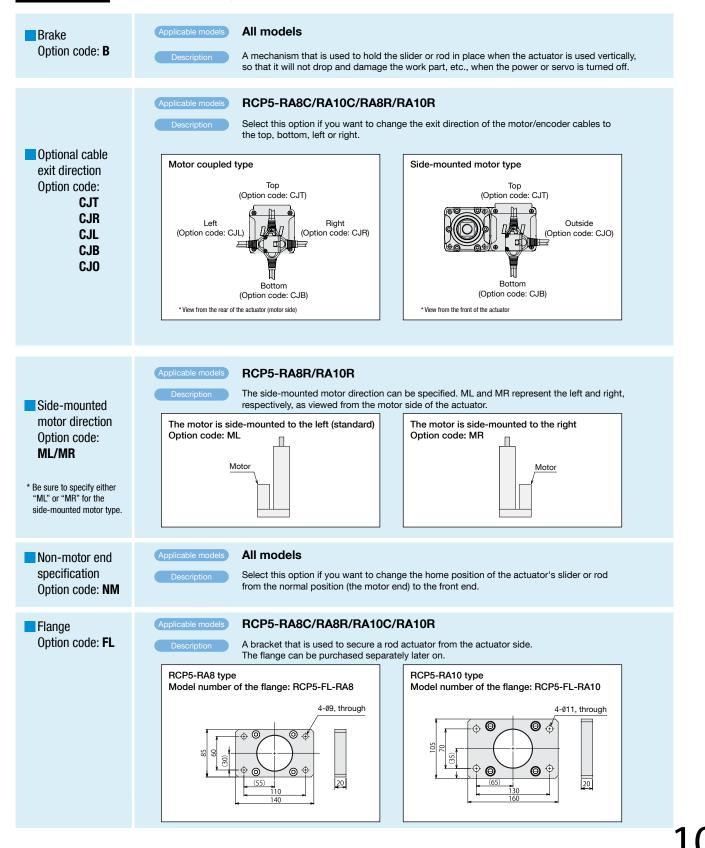
Rod type			\rightarrow P.23							
Model	Туре	External view	Actuator		Ball screw	Maximum speed	Maximum payload (kg)		Page	
Model	type	External view	width	(mm)	lead (mm)	(mm/s)	Horizontal	Vertical	1 ugo	
			F		20	600 <450>	30	5		
	RA8C	8		50~700	10	300 <250>	60	40	→P.23	
Straight		A.	88mm		5	150	100	70		
motor specification			108mm	0000		10	250 <167>	80	80	
specification	RA10C	10C		50~800	5	125	150	100	→P.25	
	littoe				2.5	63	300	150		
			2000 88mm			20	400	30	5	
	RA8R			50~700 88mm	10	200	60	40	→P.27	
Side-mounted	Side-mounted				5	100	100	70		
motor specification			1		10	200 <140>	80	80	→P.29	
specification	RA10R		000	50~800	5	100	150	100		
		NATUR	108mm	50 000	2.5	50	300	150		

Controller


 \rightarrow P.39

Maximum number of connected axes	Туре	External view	PLC function	Applicable encoder	Power-supply voltage	Features	Page
1 axis	PCON-CA/CFA		_	Incremental		Single-axis positioner is designed for easy control using PIOs. Common boards are used to let you operate the range of actuators from RCP2 through RCP5 with the same controller by simply changing the parameters.	→P.39
8 axes	MSEP-C	NANAN ^T	—	Simple absolute Battery-less absolute	DC24V	8-axis positioner is designed for easy control using PIOs. A combination of pulse motor, AC servo motor and DC servo motor actuators can be operated with one controller.	→P47
б axes	MSEP-LC		\bigcirc			The I/O control function supports standalone operation and control of peripheral equipment.	

Models/Options __ RCP5series


The ROBO Cylinder is Easy to Use!!!

Option

Actuator Options

Actuat	or spe	cificat	ions	
and a	nd Pav	lood		

Model number		Connected		Maximum payload		Stroke					
Model humber	(mm)	con	controller		Vertical (kg)	(mm)					
		High output enabled	PCON-CA MSEP-C/LC								
RCP5-SA4C-WA-35P-16-①-P3-②-③	16	High output	PCON-CA	4	1						
		disabled	MSEP-C/LC								
		High output	PCON-CA								
RCP5-SA4C-WA-35P-10-①-P3-②-③	10	10	enabled	MSEP-C/LC	10	2.25					
		10	10		High output	PCON-CA	10	2.20			
						disabled	MSEP-C/LC			50~500	
	5						High output	PCON-CA			(every 50mm)
		enabled	MSEP-C/LC	12	4.5						
RCP5-SA4C-WA-35P-5- ① -P3- ② - ③	ľ	High output	PCON-CA	12	4.5						
		disabled	MSEP-C/LC								
		High output									
	2.5	enabled	MSEP-C/LC	12	9						
RCP5-SA4C-WA-35P-2.5- ① -P3- ② - ③	2.5	High output	PCON-CA	12	5						
		disabled	MSEP-C/LC								

Strok	Stroke and Maximum Speed (unit: mm/s)						
Lead (mm)		Connected controller		450 (mm)	500 (mm)		
10	High output enabled	PCON-CA MSEP-C/LC	1260	1060	875		
10	16 High output disabled		840				
10	High output enabled	PCON-CA MSEP-C/LC	785	675	555		
10	High output disabled	PCON-CA MSEP-C/LC	525				
5	High output enabled	PCON-CA MSEP-C/LC	390	330	275		
5	High output disabled	PCON-CA MSEP-C/LC		260			
2.5	High output enabled	PCON-CA MSEP-C/LC	195	165	135		
2.5	High output disabled	PCON-CA MSEP-C/LC		130			

Code explanation ① Stroke ② Cable length ③ Options

P (1m) S (3m) M (5m)

 X06 (6m) ~ X10 (10m)

 X11 (11m) ~ X15 (15m)

 X16 (16m) ~ X20 (20m)

 R01 (1m) ~ R03 (3m)

 R04 (1m) ~ R05 (5m)

R04 (4m) ~ R05 (5m)

R06 (6m) ~ R10 (10m) R11 (11m) ~ R15 (15m)

B16 (16m) ~ **B20** (20m)

② Cable Length Туре

Standard type

Special length

Robot cable

 Stroke 			
Stroke (mm)	Standard price	Stroke (mm)	Standard price
50	—	300	—
100	—	350	—
150	—	400	—
200	—	450	—
250	—	500	—

Cable symbol

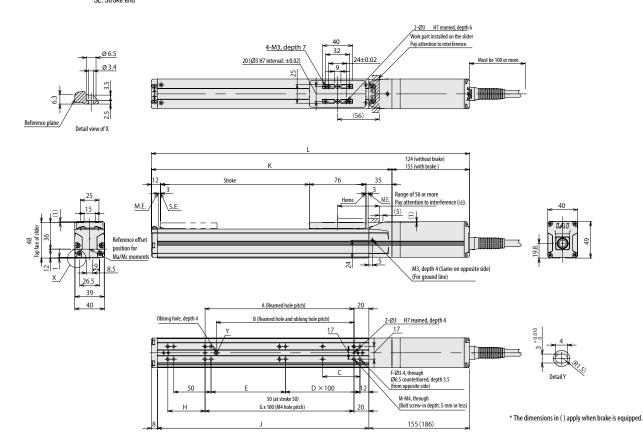
Standard price

Option code	See page	Standard price
В	NP10	—
NM		—
	В	B →P10

Item	Description
Drive system	Ball screw ø8mm, rolled C10
Positioning repeatability	±0.02mm
Lost motion	0.1 mm or less
Base	Material: Aluminum with white alumite treatment
Guide	Linear guide
Dynamic allowable moment (*1)	Ma: 3.9 N·m, Mb: 5.5 N·m, Mc: 7.5 N·m
Allowable overhang	120mm or less in Ma, Mb and Mc directions
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)
*1) Based on 5,000km of traveling life	· · · · · · · · · · · · · · · · · · ·

*1) E	Based	on	5,000k	m of	travel	ing	life
-------	-------	----	--------	------	--------	-----	------

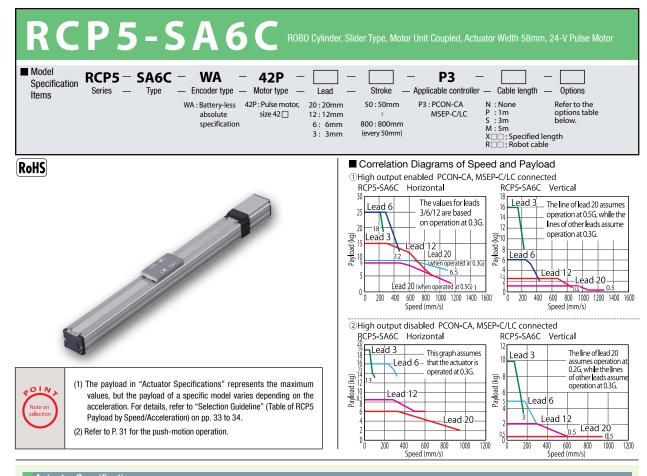
Allowable load moment directions


Mc Ma Mc

Overhang load lengths

1	1

*1 During home return, be careful to avoid interference from peripheral objects because the slider travels until the mechanical end. ME: Mechanical end SE: Stroke end



Dimensions and Mass by Stroke

Stroke		50	100	150	200	250	300	350	400	450	500
1	Without brake	297	347	397	447	497	547	597	647	697	747
L	With brake	328	378	428	478	528	578	628	678	728	778
A		50	100	100	200	200	300	300	400	400	500
	В	35	85	85	185	185	285	285	385	385	485
C		25	50	50	50	50	50	50	50	50	50
D		0	0	1	1	2	2	3	3	4	4
E		50	100	50	100	50	100	50	100	50	100
	F	8	8	10	10	12	12	14	14	16	16
	G	-	1	1	2	2	3	3	4	4	5
	Н	50	50	100	50	100	50	100	50	100	50
	J	134	184	234	284	334	384	434	484	534	584
K		173	223	273	323	373	423	473	523	573	623
	М	6	6	6	8	8	10	10	12	12	14
Mass	Without brake	1.0	1.1	1.2	1.3	1.3	1.4	1.5	1.6	1.7	1.8
(kg)	With brake	1.2	1.3	1.4	1.5	1.5	1.6	1.7	1.8	1.9	2.0

Applicable Controller									
RCP5 series actuators can be operated with the controller indicated below. Select the type according to your intended application.									
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Standard price	Reference page	
Positioner type		PCON-CA-35PWAI-NP	Equipped with a high-output driver Positioner type based on PIO control	512 points			-		
Pulse-train type		1	PCON-CA-35PWAI-PLN0 PCON-CA-35PWAI-PLP0	Equipped with a high-output driver Pulse-train input type	—		Refer to P. 46	-	Refer to P. 39
Field network type		PCON-CA-35PWAI-①-0-0-□	Equipped with a high-output driver Supporting major field networks	768 points	DC24V		-		
Position controller, 8-axis type	type MSEP-C-L-33PWA-C-L-L-U e with I/ MSEP IC - 220WA-C-L-U		Positioner type that accepts connection of up to eight axes.	3 points/256 points	50211	Refer to P. 55	Contact IAI.	Refer to P. 47	
6-axis type with I/ O control function			Axes can be moved and I/O signal turned ON/OFF using a ladder logic program.	256 points			oontdot a m		
		* In the model numbers shown ab	ove, ① indicates the field network specification (DV	, CC, PR, CN, ML, EC or	EP)				

Actuator Specifications							
Lead and Payload							S
Model number	Lead (mm)		Connected controller		payload Vertical (kg)	Stroke (mm)	Lea (mr
3CP5-SA6C-WA-42P-20-①-P3-②-③	20	High output enabled	PCON-CA MSEP-C/LC	10	1		2
NUPD-3A0U-WA-42P-2U-12-P3-122-132	20	High output disabled	PCON-CA MSEP-C/LC	6	0.5		20
	12	High output enabled	PCON-CA MSEP-C/LC	15	2.5		12
RCP5-SA6C-WA-42P-12- ① -P3- ② - ③		High output disabled	PCON-CA MSEP-C/LC	8.5	2	50~800	
	0	High output enabled	PCON-CA MSEP-C/LC	25	6	(every 50mm)	6
RCP5-SA6C-WA-42P-6- ① -P3- ② - ③	6	High output disabled	PCON-CA MSEP-C/LC	16	5		
	3	High output enabled	PCON-CA MSEP-C/LC	25	16		3
RCP5-SA6C-WA-42P-3- ① -P3- ② - ③	3	High output disabled	PCON-CA MSEP-C/LC	19	10		

Stro	Stroke and Maximum Speed The values in <> apply when the actuator is used vertically. (unit: mm/s)											
Lead (mm)	Conne contr		50~400 (every 50mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)	750 (mm)	800 (mm)	
20	High output enabled	PCON-CA MSEP-C/LC		1440 <1280>		1130	970	840	735	650	575	
20	High output disabled	PCON-CA MSEP-C/LC		9	60			840	735	650	575	
12	High output enabled	PCON-CA MSEP-C/LC	900	885	735	620	535	460	405	355	315	
12	High output disabled	PCON-CA MSEP-C/LC		600		535			405	355	315	
6	High output enabled	PCON-CA MSEP-C/LC	450	435	365	305	265	230	200	175	155	
	High output disabled	PCON-CA MSEP-C/LC	300				265	230	200	175	155	
3	High output enabled	PCON-CA MSEP-C/LC	225	215	180	150	130	115	100	85	75	
	High output disabled	PCON-CA MSEP-C/LC		150			130	115	100	85	75	

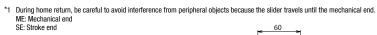
Code explanation 🛈 Stroke 🙆 Cable length 🕄 Options

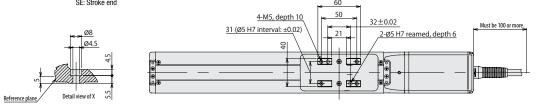
① Stroke			
Stroke (mm)	Standard price	Stroke (mm)	Standard price
50	-	450	_
100	-	500	—
150	-	550	_
200	_	600	—
250	-	650	_
300	-	700	—
350	-	750	_
400	_	800	_

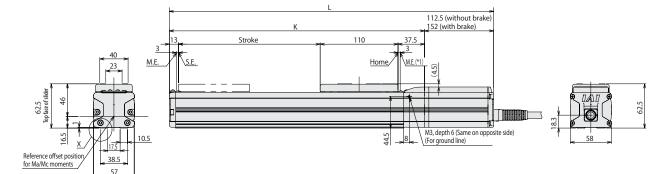
(2) Cable Length								
Туре	Cable symbol	Standard price						
	P (1m)	—						
Standard type	S (3m)	—						
	M (5m)	_						
	X06(6m) ~ X10(10m)	—						
Special length	X11(11m) ~ X15(15m)	—						
	X16(16m) ~ X20(20m)	—						
	R01(1m) ~ R03(3m)	—						
	R04(4m) ~ R05(5m)	—						
Robot cable	R06(6m) ~ R10(10m)	_						
	R11(11m) ~ R15(15m)	_						
	R16(16m) ~ R20(20m)	_						

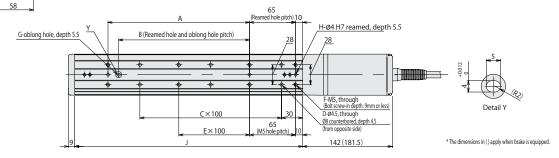
③ Option							
Name	Option code	See page	Standard price				
Brake	В	→P.10	—				
Non-motor end specification	NM		—				
Actuator Specifications							
Item		Description					
Drive system	Ball screw ø	Ball screw ø10mm, rolled C10					
Deathing in a new set of the (***)	0.00 /	0.00 [0.00]					

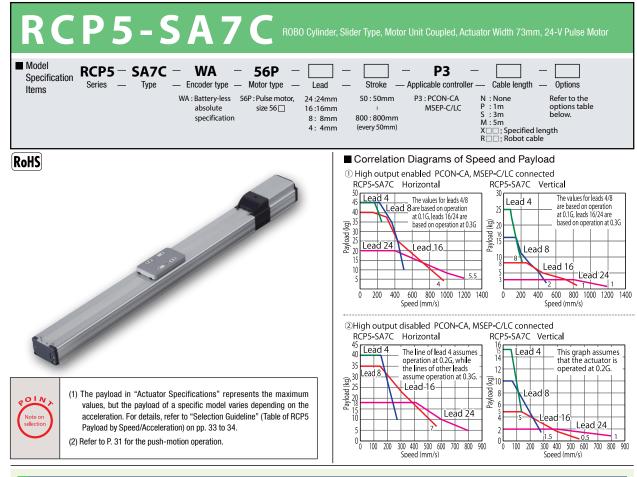
Positioning repeatability (*1)	±0.02mm [±0.03]
Lost motion	0.1mm or less
Base	Material: Aluminum with white alumite treatment
Guide	Linear guide
Dynamic allowable moment (*2)	Ma: 8.9 N·m, Mb: 12.7 N·m, Mc: 18.6 N·m
Allowable overhang	150mm or less in Ma, Mb and Mc directions
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)
(*1) The value at lead 00 is shown in [1	


Overhang load lengths


(*1) The value at lead 20 is shown in []. (*2) Based on 5,000km of traveling life


Allowable load moment directions


Mb Mc Ma Mc



Dimensions and Mass by Stroke

	Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
	Without brake	323	373	423	473	523	573	623	673	723	773	823	873	923	973	1023	1073
L .	With brake	362.5	412.5	462.5	512.5	562.5	612.5	662.5	712.5	762.5	812.5	862.5	912.5	962.5	1012.5	1062.5	1112.5
	A	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
	В	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
	С	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
	D	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	E	0	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7
	F	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
	G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Н	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	J	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
	K	210.5	260.5	310.5	360.5	410.5	460.5	510.5	560.5	610.5	660.5	710.5	760.5	810.5	860.5	910.5	960.5
Mass	Without brake	1.7	1.8	2.0	2.2	2.4	2.5	2.7	2.9	3.1	3.2	3.4	3.6	3.8	3.9	4.1	4.3
(kg)	With brake	1.9	2.0	2.2	2.4	2.6	2.7	2.9	3.1	3.3	3.4	3.6	3.8	4.0	4.1	4.3	4.5

Applicable Controller RCP5 series actuators can be operated with the controller indicated below. Select the type according to your intended application.										
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Standard price	Reference page		
Positioner type	a	PCON-CA-42PWAI-NPO PCON-CA-42PWAI-PNO	Equipped with a high-output driver Positioner type based on PIO control	512 points			-			
Pulse-train type		PCON-CA-42PWAI-PLN0 PCON-CA-42PWAI-PLP0	Equipped with a high-output driver Pulse-train input type	_		Refer to P. 46	-	Refer to P. 39		
Field network type		PCON-CA-42PWAI-①-0-0-□	Equipped with a high-output driver Supporting major field networks	768 points	DC24V		_			
Position controller, 8-axis type			Positioner type that accepts connection of up to eight axes.	3 points/256 points		Refer to P. 55	Contact IAI.	Refer to P. 47		
		Axes can be moved and I/O signal turned ON/OFF using a ladder logic program.	256 points		HUIGI (U I. JJ	oomaCt IAI.	neiei (0 P. 47			

Actuator Specifications								
Lead and Payload								
Model number	Lead (mm)	Connected	d controller	Maximun Horizontal (kg)	n payload Vertical (kg)	Stroke (mm)		
		High output enabled	PCON-CA MSEP-C/LC	20	3	(iiiii)		
RCP5-SA7C-WA-56P-24-①-P3-②-③	24	High output disabled	PCON-CA MSEP-C/LC	18	2			
	16	High output enabled	PCON-CA MSEP-C/LC	40	8			
RCP5-SA7C-WA-56P-16- ①-P3- ②- ③		High output disabled	PCON-CA MSEP-C/LC	35	5	50~800		
	8	High output enabled	PCON-CA MSEP-C/LC	45	16	(every 50mm)		
RCP5-SA7C-WA-56P-8-①-P3-②-③	0	High output disabled	PCON-CA MSEP-C/LC	40	10			
	4	High output enabled	PCON-CA MSEP-C/LC	45	25			
RCP5-SA7C-WA-56P-4- ① -P3- ② - ③		High output disabled	PCON-CA MSEP-C/LC	40	15			

Code explanation 🛈 Stroke	2 Cable length 3 Options
---------------------------	--------------------------

② Cable Length

P(1m)

S(3m)

M(5m)

Cable symbol

X06(6m) ~ X10(10m)

X11(11m) ~ X15(15m)

X16(16m) ~X20(20m)

Туре

Standard

type

Special

length

 Stroke 			
Stroke (mm)	Standard price	Stroke (mm)	Standard price
50	—	450	—
100	—	500	—
150	—	550	—
200	—	600	—
250	_	650	—
300	—	700	—
350	_	750	-
400	—	800	—

Туре

Robot

cable

Cable symbol

R01(1m) ~ R03(3m)

R04(4m) ~ R05(5m)

R06(6m) ~ R10(10m)

R11(11m) ~ R15(15m)

R16(16m) ~ R20(20m)

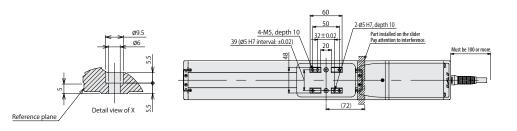
Standard price

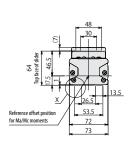
Standard price

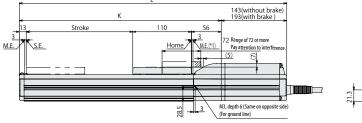
Lead (mm)	Connected controller		Connected controller 50~400 (mm) 600 (mm)		650 (mm)	700 (mm)	750 (mm)	800 (mm)
24	High output enabled	PCON-CA MSEP-C/LC	120	00	1145	1000	885	785
24	High output disabled	PCON-CA MSEP-C/LC						785
16	High output enabled	PCON-CA MSEP-C/LC	980 <840>	875 <840>	755	660	585	520
10	High output disabled	PCON-CA MSEP-C/LC			560		520	
High output enabled	PCON-CA MSEP-C/LC	490	430	375 325	325	290	255	
0	High output disabled	PCON-CA MSEP-C/LC	280					255
4	High output enabled	PCON-CA MSEP-C/LC	245 <210>	215 <210>	185	160	140	125
4	High output disabled	PCON-CA MSEP-C/LC		125				
		Image: Control Control (mm) Control 24 High output enabled High output disabled High output enabled 16 High output disabled High output disabled High output enabled High output disabled High output enabled High output High output High output High output	Image: Contracted controller (mm) High output enabled PCON-CA MSEP-CIC High output High output enabled MSEP-CIC 16 High output enabled MSEP-CIC High output High output enabled MSEP-CIC High output High output disabled MSEP-CIC High output High output disabled PCON-CA MSEP-CIC High output High output High output High output High output PCON-CA MSEP-CIC High output High output PCON-CA MSEP-CIC High output High output PCON-CA PCON-CA	Imm CONNECLE CONTOLIER (every 50mm) 244 High output High output enabled PCON-CA MSEP-C/LC 120 16 enabled enabled MSEP-C/LC 840 High output enabled PCON-CA MSEP-C/LC 980 8 High output enabled PCON-CA MSEP-C/LC 490 High output disabled MSEP-C/LC 490 High output High output PCON-CA MSEP-C/LC 455 High output PCON-CA MSEP-C/LC 245 High output PCON-CA MSEP-C/LC 210> 4 High output PCON-CA	(mm) Connected controlled enabled (every 50mm) (mm) 24 High output enabled PCON-CA MSEP-CIC 1200 16 migh output enabled MSEP-CIC MSEP-CIC 1200 16 enabled migh output enabled MSEP-CIC MSEP-CIC 490 430 8 High output enabled PCON-CA MSEP-CIC 490 430 High output enabled PCON-CA MSEP-CIC 245 215 4 High output High output PCON-CA 245 215 4 High output PCON-CA 210> 210>	(mm) Connected Conducter (every stamm) (mm) (mm) 24 High output enabled PCON-CA MSEP-CIC 1200 1145 16 High output disabled MSEP-CIC MSEP-CIC 800 16 High output disabled PCON-CA MSEP-CIC 800 16 High output disabled PCON-CA MSEP-CIC 840> 755 8 High output enabled PCON-CA MSEP-CIC 490 430 375 8 High output enabled PCON-CA MSEP-CIC 280 280 4 High output High output PCON-CA PCON-CA 245 215> 185 4 High output PCON-CA PCON-CA 210> 210> 140	Imm Connected controller every stamp (mm) (mm) (mm) (mm) 244 High output High output disabled PCON-CA MSEP-C/LC 12.00 11.45 1000 16 High output disabled PCON-CA MSEP-C/LC 800 875 755 660 High output disabled PCON-CA MSEP-C/LC 840.5 560 560 High output disabled MSEP-C/LC 490 430 375 325 8 High output disabled PCON-CA MSEP-C/LC 245 215 185 160 4 High output High output disabled PCON-CA MSEP-C/LC 210.5 140 140	Imp Connecter controller (every \$50mm) (mm) <

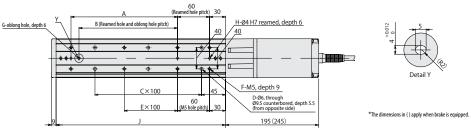
Stroke and Maximum Speed

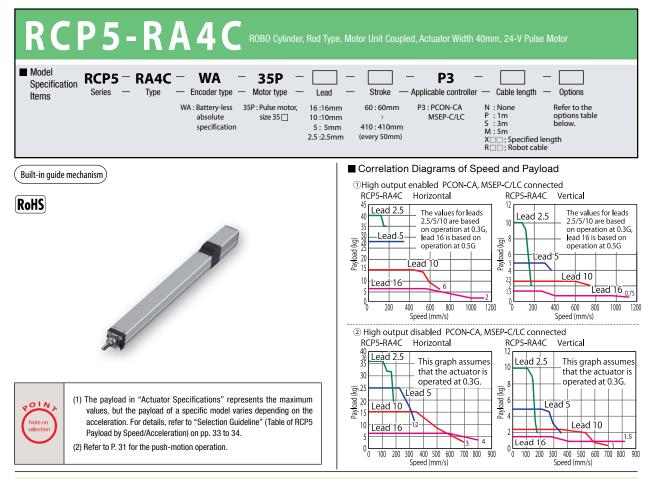
③ Option


The values in < > apply when the actuator is used vertically, (unit: mm/s)


Name	tion code	See page	Standard price				
Brake	В	→P.10	—				
Non-motor end specification	NM		—				
Actuator Specification	າຣ						
Item			Description				
Drive system		Ball screw ø12mm, rolled C10					
Positioning repeatability (*1)		±0.02mm [±0.03]					
Lost motion		0.1mm or less					
Base		Material: Aluminum with white alumite treatment					
Guide		Linear guide					
Dynamic allowable moment (*2)		Ma: 10 N·m, Mb: 14.2 N·m, Mc: 28.8 N·m					
Allowable overhang		230mm or less in Ma, Mb and Mc directions					
Ambient operating temperature, h	0 to 40°C, 85% RH or less (Non-condensing)						
(*1) The value at lead 24 is shown in [(*2) Based on 5,000km of traveling life	e	Overhang load lengths					




*1 During home return, be careful to avoid interference from peripheral objects because the slider travels until the mechanical end. ME: Mechanical end SE: Stroke end



Dimensions and Mass by Stroke

	Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
	Without brake	372	422	472	522	572	622	672	722	772	822	872	922	972	1022	1072	1122
L	With brake	422	472	522	572	622	672	722	772	822	872	922	972	1022	1072	1122	1172
	A	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
	В	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
	С	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
	D	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	E	0	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7
	F	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
	G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Н	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	J	168	218	268	318	368	418	468	518	568	618	668	718	768	818	868	918
	K	229	279	329	379	429	479	529	579	629	679	729	779	829	879	929	979
Mass	B Without brake	3.0	3.2	3.5	3.7	3.9	4.1	4.4	4.6	4.8	5.0	5.3	5.5	5.7	5.9	6.1	6.4
(kg)	With brake	3.5	3.7	4.0	4.2	4.4	4.6	4.9	5.1	5.3	5.5	5.8	6.0	6.2	6.4	6.6	6.9

RCP5 series actuators can be operated with the controller indicated below. Select the type according to your intended application.										
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity		Reference page		
Positioner type	1	PCON-CA-56PWAI-NP0 PCON-CA-56PWAI-PN0	Equipped with a high-output driver Positioner type based on PIO control	512 points			-			
Pulse-train type			PCON-CA-56PWAI-PLN-🗆+O-🗆 PCON-CA-56PWAI-PLP-🗆-O-🗆	Equipped with a high-output driver Pulse-train input type	—		Refer to P. 46	-	Refer to P. 39	
Field network type		PCON-CA-56PWAI-①-0-0-ロ	Equipped with a high-output driver Supporting major field networks	768 points	DC24V		-			
Position controller, 8-axis type		MSEP-C56PWAI~0	Positioner type that accepts connection of up to eight axes.	3 points/256 points			Contact M	Defer to D 47		
		Axes can be moved and I/O signal turned ON/OFF using a ladder logic program.			Refer to P. 55	Contact IAI.	Refer to P. 47			

Lead and Payload							
Model number	Lead (mm)	Connecte	d controller	Maximum Horizontal (kg)		Maximum push force (N)	Stroke (mm)
RCP5-RA4C-WA-35P-16-①-P3-②-③	16	High output enabled	PCON-CA MSEP-C/LC	6	1.5	48	
	10	High output disabled	PCON-CA MSEP-C/LC		1.5	40	
	10	High output enabled	PCON-CA MSEP-C/LC	15	2.5	77	
RCP5-RA4C-WA-35P-10- 🛈 -P3- 🙋 - 🕄		High output PCON-CA disabled MSEP-C/LC	15	2.5		60~410	
	5	High output enabled	PCON-CA MSEP-C/LC	28	5	155	(every 50mm)
RCP5-RA4C-WA-35P-5-①-P3-②-③	Э	High output disabled	PCON-CA MSEP-C/LC	20	5	100	
	2.5	High output enabled	PCON-CA MSEP-C/LC	40	10		
RCP5-RA4C-WA-35P-2.5- ① -P3- ② - ③	2.5	High output disabled	PCON-CA MSEP-C/LC	36	10	310	

See page

 \rightarrow P10

Standard price

The values in <> apply when										
Stroke and Maximum Speed the actuator is used vertically. (unit: mm/s)										
Lead (mm)	Conne	cted controller	60~360 (every 50mm)	410 (mm)						
10	High output enabled	PCON-CA MSEP-C/LC	1120	1080						
16	High output disabled	PCON-CA MSEP-C/LC	84	0						
10	High output	PCON-CA		685						
	enabled High output disabled	MSEP-C/LC PCON-CA	700							
		MSEP-C/LC								
5	High output enabled	PCON-CA MSEP-C/LC	250	0.40						
э	High output disabled	PCON-CA MSEP-C/LC	350	340						
	High output	PCON-CA								
2.5	enabled High output	MSEP-C/LC PCON-CA	175	170						
	disabled	MSEP-C/LC								

Code explanation 🛈 Stroke 🙆 Cable length 🕄 Options

③ Option

Brake

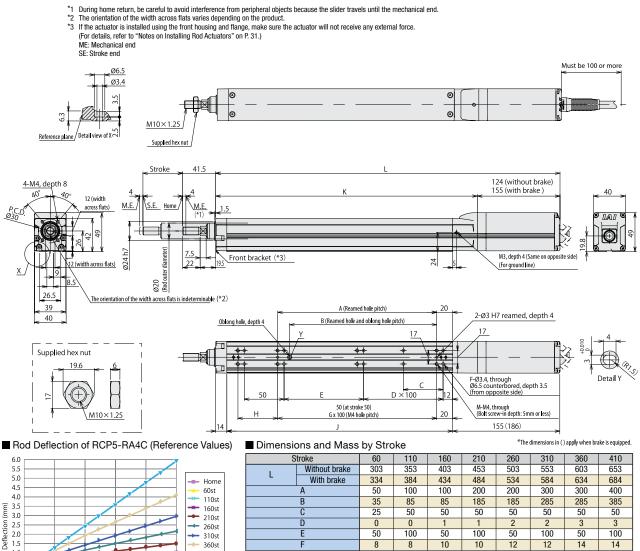
Name

Non-motor end specification

 Stroke 	
Stroke (mm)	Standard price
60	-
110	-
160	-
210	-
260	-
310	-
360	-
410	_

Option code

NM

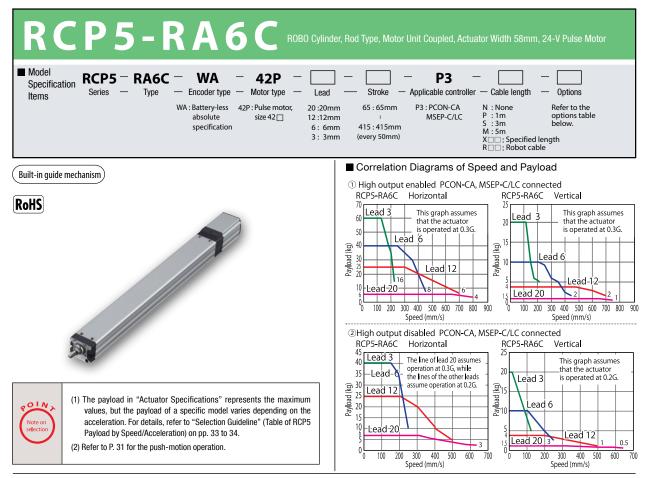

Туре	Cable symbol	Standard price		
	P (1m)	—		
Standard type	S (3m)	—		
	M (5m)	—		
	X06 (6m) ~ X10 (10m)	—		
Special length	X11 (11m) ~ X15 (15m)	—		
	X16 (16m) ~ X20 (20m)	—		
	R01 (1m) ~ R03 (3m)	—		
	R04 (4m) ~ R05 (5m)	—		
Robot cable	R06 (6m) ~ R10 (10m)	—		
	R11 (11m) ~ R15 (15m)			
	R16 (16m) ~ R20 (20m)	—		

Actuator Specifications	
Item	Description
Drive system	Ball screw ø8mm, rolled C10
Positioning repeatability	±0.02mm
Lost motion	0.1mm or less
Rod	ø20mm Aluminum
Rod non-rotation precision (*1)	±0 deg
Allowable rod load mass	Refer to P. 18 and P. 35
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

(*1) Accuracy of rod displacement in rotating direction when no load is received.

② Cable Length

Sold & Serviced By:
Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099
www.electromate.com sales@electromate.com



	1					
					1	Home
					1 🛶	60st
					┦ ≁	110st
						160st
					*	210st
					-	260st
					1 →	310st
					♦ →-	360st
					*	410st
					* ∟	
0	10 2	0 3	0 4	0	50	
	Load	at end of r	od (N)			
		0 10 2	0 10 20 3		0 10 20 30 40	

S	troke	60	110	160	210	260	310	360	410
1	Without brake	303	353	403	453	503	553	603	653
L	With brake	334	384	434	484	534	584	634	684
A		50	100	100	200	200	300	300	400
	В	35	85	85	185	185	285	285	385
	С	25	50	50	50	50	50	50	50
	D	0	0	1	1	2	2	3	3
	E	50	100	50	100	50	100	50	100
	F	8	8	10	10	12	12	14	14
	G	-	1	1	2	2	3	3	4
	Н	50	50	100	50	100	50	100	50
	J	134	184	234	284	334	384	434	484
	K	179	229	279	329	379	429	479	529
	М	6	6	6	8	8	10	10	12
Allowable static	load at end of rod (N)	55.8	44.6	37.1	31.7	27.6	24.3	21.7	19.5
Allowable dynamic	Load offset Omm	25.4	19.5	15.5	12.8	10.8	9.2	7.9	6.9
load at end of rod (N)	Load offset 100mm	16.5	14.5	12.4	10.7	9.2	8.0	7.0	6.2
Allowable static tor	que at end of rod (N·m)	5.6	4.5	3.8	3.2	2.8	2.5	2.3	2.1
Allowable dynamic t	orque at end of rod (N•m)	1.7	1.5	1.2	1.1	0.9	0.8	0.7	0.6
Mass (kg)	Without brake	1.1	1.2	1.3	1.4	1.6	1.7	1.8	1.9
mass (Ky)	With brake	1.3	1.4	1.5	1.6	1.8	1.9	2.0	2.1

Applicable Controller									
RCP5 series actuators can be operated with the controller indicated below. Select the type according to your intended application.									
Name	External view	Model number	Model number Features		Input power	Power supply capacity	Standard price	Reference page	
Positioner type	<u>í</u>	PCON-CA-35PWAI-NP0 PCON-CA-35PWAI-PN0	Equipped with a high-output driver Positioner type based on PIO control	512 points			_		
Pulse-train type	PCON-CA-35PWAI-PLND-C Equipped with a high-output PCON-CA-35PWAI-PLP-CD-C Pulse-train input type		Equipped with a high-output driver Pulse-train input type	_		Refer to P. 46	-	Refer to P. 39	
Field network type		PCON-CA-35PWAI-①-0-0-ロ	Equipped with a high-output driver Supporting major field networks	768 points	DC24V		-		
Position controller, 8-axis type		MSEP-C35PWAI~0	Positioner type that accepts connection of up to eight axes.	3 points/256 points		Refer to P. 55	Contact IAI.	Refer to P. 47	
6-axis type with I/0 control function		MSEP-LC35PWAI~0	Axes can be moved and I/O signal turned ON/OFF using a ladder logic program.	256 points		neiei 10 P. 55	COMACT IAI.	neiei 10 P. 47	
		*In the model numbers show	n above, ① indicates the field network specificat	tion (DV, CC, PR, CN	, ML, EC or EP)				

Actuator Specifications						
Lead and Payload						
Model number	Lead (mm)	Connected cont	roller Maxi	mum payload I (kg) Vertical (kg)	Maximum push force (N)	Stroke (mm)
RCP5-RA6C-WA-42P-20- ①-P3- ②- ③	20	enabled MSEF High output PCO	N-CA C/LC N-CA C/LC C/LC	1.5	56	
RCP5-RA6C-WA-42P-12-①-P3-②-③	12	enabled MSEF High output PCO	N-CA <u>-C/LC</u> N-CA <u>-C/LC</u> 25	4	93	65~415
RCP5-RA6C-WA-42P-6-①-P3-②-③	6	enabled MSEF High output PCO	N-CA -C/LC N-CA -C/LC -C/LC	10	185	(every 50mm)
RCP5-RA6C-WA-42P-3-①-P3-②-③	3	enabled MSEF High output PCO	N-CA -C/LC 60 N-CA -C/LC 40	20	370	

Code explanation ① Stroke ② Cable length ③ Options

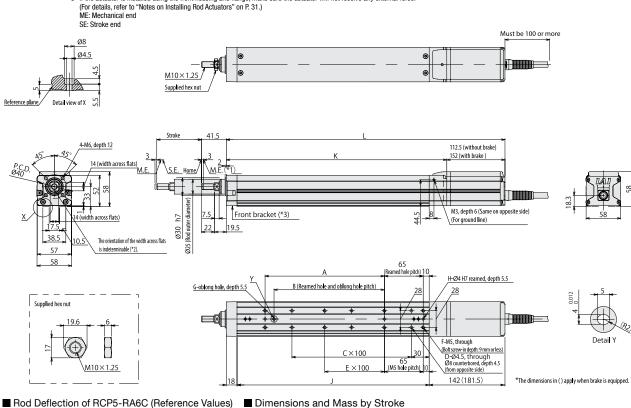
 Stroke 			
Stroke (mm)	Standard price	Stroke (mm)	Standard price
65	—	265	_
115	—	315	_
165	—	365	_
215	—	415	_

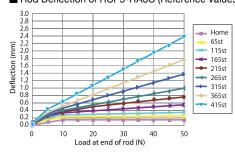
Stroke a	Stroke and Maximum Speed (unit: mm/s)								
Lead (mm)	Conne	cted controller	65~365 (every 50mm)	415 (mm)					
	High output	PCON-CA	80	0					
20	enabled	MSEP-C/LC	00						
20	High output	PCON-CA	640						
	disabled	MSEP-C/LC							
	High output	PCON-CA	700						
12	enabled	MSEP-C/LC							
12	High output	PCON-CA	500						
	disabled	MSEP-C/LC							
	High output	PCON-CA	450						
6	enabled	MSEP-C/LC	4.	0					
0	High output	PCON-CA	25	50					
	disabled	MSEP-C/LC	250						
	High output	PCON-CA	225	220					
3	enabled	MSEP-C/LC	225	220					
5	High output	PCON-CA	10	5					
	disabled	MSEP-C/LC	125						

② Cable Length					
Туре	Cable symbol	Standard price			
	P(1m)	—			
Standard type	S (3m)	—			
	M (5m)	—			
	X06 (6m) ~ X10 (10m)	—			
Special length	X11 (11m) ~ X15 (15m)	—			
	X16(16m) ~ X20(20m)	—			
	R01 (1m) ~ R03 (3m)	—			
	R04 (4m) ~ R05 (5m)	—			
Robot cable	R06(6m) ~ R10(10m)	—			
	R11 (11m) ~ R15 (15m)	—			
	R16(16m) ~ R20(20m)	_			

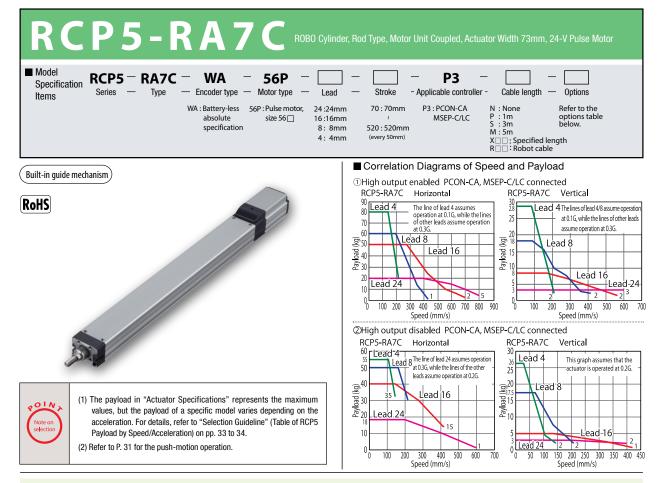
③ Option			
Name	Option code	See page	Standard price
Brake	В	→P.10	-
Non-motor end specification	NM	→r.10	-

Actuator Specifications


Item	Description
Drive system	Ball screw ø10mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Rod	ø25mm Aluminum
Rod non-rotation precision (*2)	±0 deg
Allowable rod load mass	Refer to P. 20 and P. 35
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)


(*1) The value at lead 20 is shown in []. (*2) Accuracy of rod displacement in rotating direction when no load is received.

- 2 The orientation of width across flats varies depending on the product.
 3 If the actuator is installed using the front housing and flange, make sure the actuator will not receive any external force.



Dimensi	Dimensions and Mass by Stroke								
5	Stroke	65	115	165	215	265	315	365	415
	Without brake	332	382	432	482	532	582	632	682
L L	With brake	371.5	421.5	471.5	521.5	571.5	621.5	671.5	721.5
	A	0	100	100	200	200	300	300	400
	В	0	85	85	185	185	285	285	385
	С	1	1	2	2	3	3	4	4
	D	4	4	6	6	8	8	10	10
	E	0	0	0	1	1	2	2	3
	F	4	6	6	8	8	10	10	12
	G	0	1	1	1	1	1	1	1
	Н	2	3	3	3	3	3	3	3
	J	172	222	272	322	372	422	472	522
	K	219.5	269.5	319.5	369.5	419.5	469.5	519.5	569.5
Allowable static	load at end of rod (N)	113.8	92.6	78.0	67.3	59.0	52.5	47.2	42.8
Allowable dynamic	Load offset Omm	45.7	36.3	29.8	25.1	21.6	18.8	16.6	14.7
load at end of rod (N)	Load offset 100mm	32.1	28.3	24.6	21.5	18.9	16.7	14.9	13.4
Allowable static to	rque at end of rod (N•m)	11.5	9.4	7.9	6.8	6.0	5.4	4.9	4.5
Allowable dynamic	torque at end of rod (N·m)	3.2	2.8	2.5	2.1	1.9	1.7	1.5	1.3
Mace (kg)	Without brake	1.8	2.0	2.2	2.4	2.6	2.9	3.1	3.3
Mass (kg)	With brake	2.0	2.2	2.4	2.6	2.8	3.1	3.3	3.5

Applicable Controller RCP5 series actuators can be operated with the controller indicated below. Select the type according to your intended application.										
Name External view Model number Features Maximum number of positioning points Input power Power supply capacity Standard price Reference page										
Positioner type	Ĩ.	PCON-CA-42PWAI-NP-C-0-C PCON-CA-42PWAI-PN-C-0-C	Equipped with a high-output driver Positioner type based on PIO control	512 points			_			
Pulse-train type		PCON-CA-42PWAI-PLN0 PCON-CA-42PWAI-PLP0	Equipped with a high-output driver Pulse-train input type	_		Refer to P. 46	-	Refer to P. 3		
Field network type		PCON-CA-42PWAI-①-0-0-ロ	Equipped with a high-output driver Supporting major field networks	768 points	DC24V		-	1		
Position controller, 8-axis type		MSEP-C42PWAI~0	Positioner type that accepts connection of up to eight axes.	3 points/256 points		Refer to P. 55	Contact IAI.	Refer to P. 4		
6-axis type with I/0 control function	lii i	MSEP-LC42PWAI~0	Axes can be moved and I/O signal turned ON/ OFF using a ladder logic program.	256 points		neier to F. 33	oomatt IAI.	noici lu r. 4		

*In the model numbers shown above, ① indicates the field network specification (DV, CC, PR, CN, ML, EC or EP).

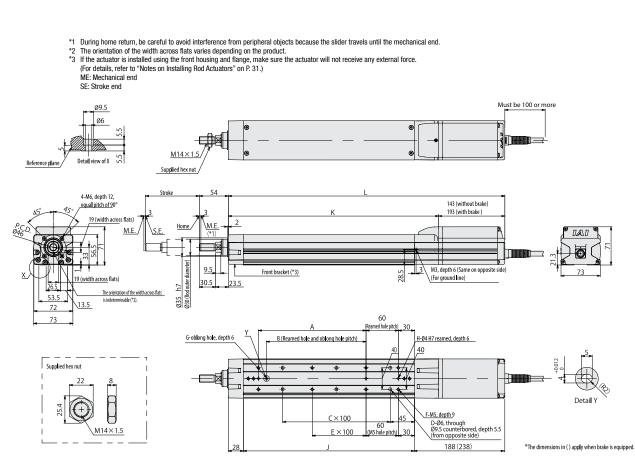
Model number	Lead	Cannad	ad controllar	Maximum	n payload	Maximum	Chrolie (mm)
Model number	(mm)	Connect	ed controller	Horizontal (kg)	Vertical (kg)	push force (N)	Stroke (mm)
RCP5-RA7C-WA-56P-24-①-P3-②-③	24	High output enabled	PCON-CA MSEP-C/LC	20	3	182	
	24	High output disabled	PCON-CA MSEP-C/LC	18	3	102	_
	16	High output enabled	PCON-CA MSEP-C/LC	50	8	273	
RCP5-RA7C-WA-56P-16- ①-P3- ②- ③	10	High output disabled	PCON-CA MSEP-C/LC	40	5	213	70~520
	0	High output enabled	PCON-CA MSEP-C/LC	60	18	547	(every 50mm)
8CP5-RA7C-WA-56P-8- ① -P3- ② - ③	8	High output disabled	PCON-CA MSEP-C/LC	50	17.5	1 347	
RCP5-RA7C-WA-56P-4-①-P3-②-③	4	High output enabled	PCON-CA MSEP-C/LC	80	28	1094	
	4	High output disabled	PCON-CA MSEP-C/LC	55	26	1094	

Code explanation ① Stroke ② Cable length ③ Options

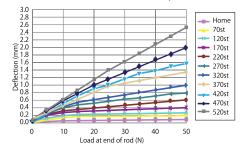
U Stroke			
Stroke (mm)	Standard price	Stroke (mm)	Standard price
70	—	320	_
120	—	370	_
170	_	420	—
220	—	470	—
270	_	520	_

Stroke ar	nd Maxim	um Speed	The values in < > apply when the actuato is used vertically. (unit: mm/s
Lead (mm)	Conne	cted controller	70~520 (every 50mm)
	High output	PCON-CA	800
24	enabled	MSEP-C/LC	<600>
24	High output	PCON-CA	600
	disabled	MSEP-C/LC	<400>
	High output	PCON-CA	700
16	enabled	MSEP-C/LC	<560>
10	High output	PCON-CA	420
	disabled	MSEP-C/LC	420
	High output	PCON-CA	420
8	enabled	MSEP-C/LC	420
0	High output	PCON-CA	210
	disabled	MSEP-C/LC	210
	High output	PCON-CA	210
4	enabled	MSEP-C/LC	210
4	High output	PCON-CA	140
	disabled	MSEP-C/LC	140

② Cable Ler	ngth	
Туре	Cable symbol	Standard price
	P(1m)	—
Standard type	S (3m)	—
	M (5m)	_
	X06 (6m) ~ X10 (10m)	—
Special length	X11 (11m) ~ X15 (15m)	—
	X16(16m) ~ X20(20m)	—
	R01 (1m) ~ R03 (3m)	—
	R04 (4m) ~ R05 (5m)	—
Robot cable	R06 (6m) ~ R10 (10m)	_
	R11 (11m) ~ R15 (15m)	—
	R16(16m) ~ R20(20m)	_

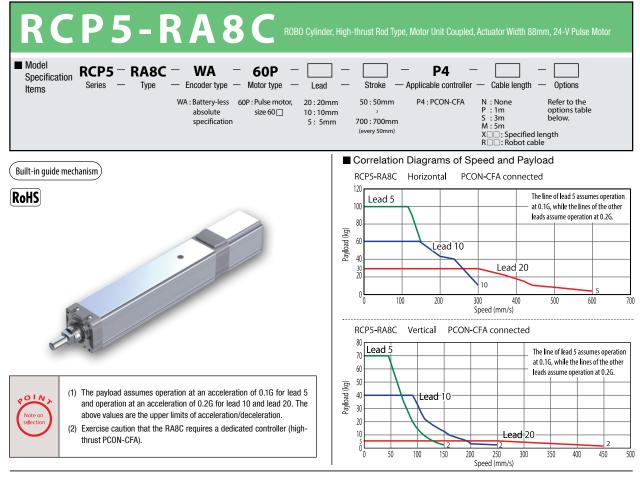

③ Option			
Name	Option code	See page	Standard price
Brake	В	→P.10	-
Non-motor end specification	NM	→P.10	—

/ lotadior op comoditorito	
Item	Description
Drive system	Ball screw ø12mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Rod	ø30mm Aluminum
Rod non-rotation precision (*2)	±0 deg
Allowable rod load mass	Refer to P. 22 and P. 35
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)


Actuator Specifications

(*1) The value at lead 24 is shown in []. (*2) Accuracy of rod displacement in rotating direction when no load is received.

■ Rod Deflection of RCP5-RA7C (Reference Values)



Dimensions and Mass by Stroke

	Stroke	70	120	170	220	270	320	370	420	470	520
	Without brake	384	434	484	534	584	634	684	734	784	834
L	With brake	434	484	534	584	634	684	734	784	834	884
	A	0	100	100	200	200	300	300	400	400	500
	В	0	85	85	185	185	285	285	385	385	485
	С	1	1	2	2	3	3	4	4	5	5
	D	4	4	6	6	8	8	10	10	12	12
	E	0	0	0	1	1	2	2	3	3	4
F		4	6	6	8	8	10	10	12	12	14
G		0	1	1	1	1	1	1	1	1	1
Н		2	3	3	3	3	3	3	3	3	3
	J	168	218	268	318	368	418	468	518	568	618
	K	241	291	341	391	441	491	541	591	641	691
Allowable stati	c load at end of rod (N)	119.2	97.7	82.8	71.6	63.0	56.2	50.6	46.0	42.2	38.8
Allowable dynamic	Load offset Omm	44.3	35.7	29.6	25.2	21.7	19.0	16.8	15.0	13.6	12.2
load at end of rod (N)	Load offset 100mm	33.9	29.7	25.7	22.4	19.7	17.4	15.5	14.0	12.8	11.5
Allowable static t	orque at end of rod (N•m)	12.1	10.0	8.5	7.4	6.5	5.9	5.3	4.9	4.5	4.1
Allowable dynamic	torque at end of rod (N·m)	3.4	3.0	2.6	2.2	2.0	1.7	1.6	1.4	1.3	1.2
Mass (kg)	Without brake	3.3	3.6	3.9	4.2	4.5	4.8	5.1	5.4	5.6	5.9
iviass (Ky)	With brake	3.8	4.1	4.4	4.7	5.0	5.3	5.6	5.9	6.1	6.4

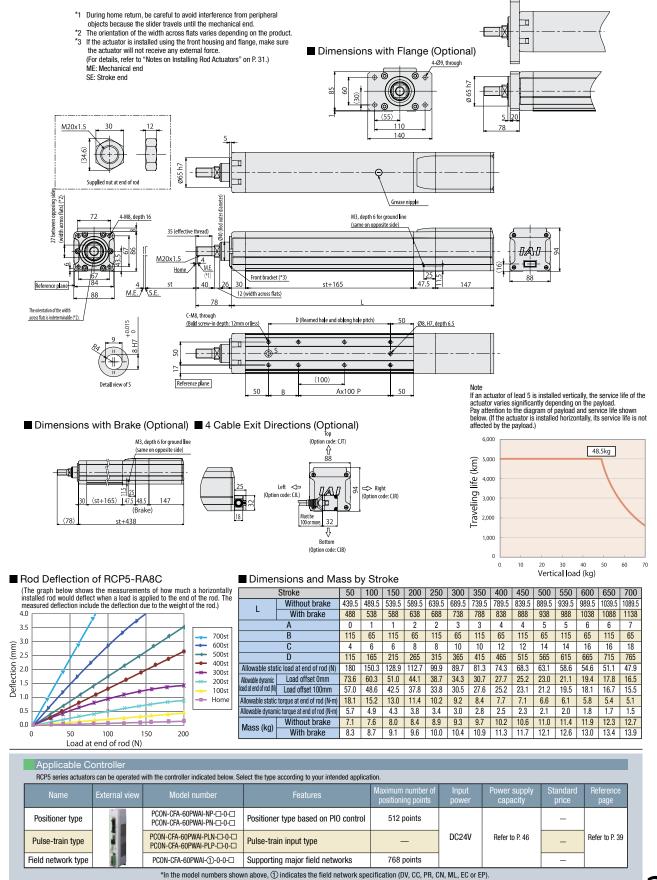
Applicable Controller RCP5 series actuators can be operated with the controller indicated below. Select the type according to your intended application.												
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Standard price	Reference page				
Positioner type	<u>í</u>	PCON-CA-56PWAI-NP0 PCON-CA-56PWAI-PN0			-							
Pulse-train type		PCON-CA-56PWAI-PLN-C-0-C Equipped with a high-output driver PCON-CA-56PWAI-PLP-C-0-C Pulse-train input type		—		Refer to P. 46	-	Refer to P. 39				
Field network type	e 🛛	PCON-CA-56PWAI-①-0-0-ロ	Equipped with a high-output driver Supporting major field networks	768 points	DC24V		-					
Position controller, 8-axis type		MSEP-C56PWAI~0	Positioner type that accepts connection of up to eight axes.	3 points/256 points		Refer to P. 55	Contact IAI.	Refer to P. 47				
6-axis type with I/0 control function		MSEP-LC	Axes can be moved and I/O signal turned ON/OFF using a ladder logic program.	256 points		110101 IU F. 33	oomatt IAI.	110101 W F. 4/				

Actuator Specifications																			
Lead and Payload		Stroke and Maximum Speed									The values in < > apply when the actuate is used vertically. (unit: mm/								
Model number	Lead (mm)	Connected controller	Maximum Horizontal (kg)		Maximum push force (N)	Stroke (mm)	Lead (mm)	50 (mm)	100 (mm)	150 (mm)	200 (mm)	250~350 (mm)	400 (mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)
RCP5-RA8C-WA-60P-20-①-P4-②-③	20	PCON-CFA	30	5	500		20	280	405	505 <450>	585 <450>	600 <450>	520 <450>	440	360	320	280	240	220
RCP5-RA8C-WA-60P-10-①-P4-②-③	10	PCON-CFA	60	40	1000	50~700 (every 50mm)	10	280 <250>			300 <250>		260 <250>	220	180	160	140	120	110
RCP5-RA8C-WA-60P-5-①-P4-②-③	5	PCON-CFA	100	70	2000		5	150			0		130	110	90	80	70	60	55

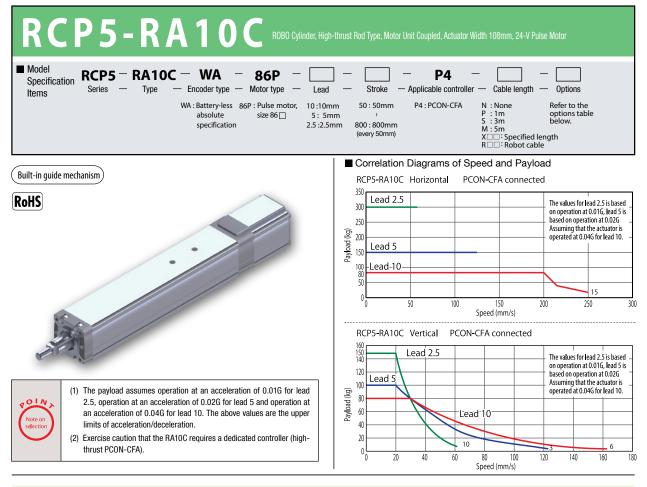
Code explanation ① Stroke ② Cable length ③ Options

Stroke

Stroke (mm)	Standard price	Stroke (mm)	Standard price					
50		400						
100		450						
150		500						
200	Contact IAI.	550	Contact IAI.					
250		600						
300		650						
350		700						


② Cable Ler	ngth	
Туре	Cable symbol	Standard price
	P (1m)	—
Standard type	S (3m)	—
	M (5m)	—
	X06 (6m) ~ X10 (10m)	—
Special length	X11 (11m) ~ X15 (15m)	_
	X16(16m) ~ X20(20m)	—
	R01 (1m) ~ R03 (3m)	—
	R04 (4m) ~ R05 (5m)	—
Robot cable	R06(6m) ~ R10(10m)	_
	R11(11m) ~ R15(15m)	—
	R16(16m) ~ R20(20m)	—

③ Option			
Name	Option code	See page	Standard price
Brake	B		
Optional cable exit direction (top)	CJT	1	
Optional cable exit direction (right)	CJR	1	
Optional cable exit direction (left)	CJL	→P.10	Contact IAI.
Optional cable exit direction (bottom)	CJB		
Flange bracket	FL		
Non-motor end specification	NM	1	


Actuator Specifications	
Item	Description
Drive system	Ball screw ø16mm, rolled C10
Positioning repeatability	±0.02mm
Lost motion	0.1mm or less
Rod	ø40mm Aluminum
Rod non-rotation precision (*1)	±0 deg
Allowable rod load mass	Refer to P. 24 and P. 35
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

(*1) Accuracy of rod displacement in rotating direction when no load is received.

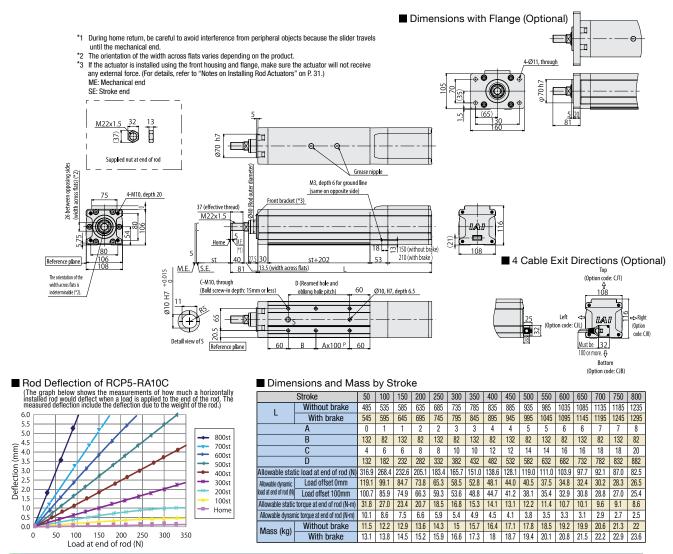
Actuator Specifications																				
Lead and Payload		Stroke and Maximum Speed																		
Model number	Lead (mm)	Connected controller	Maximun Horizontal (kg)		Maximum push force (N)	Stroke (mm)		Lead (mm)	50 (mm)	100 (mm)	150 (mm)	200~400 (every 50mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)	750 (mm)	800 (mm)
RCP5-RA10C-WA-86P-10-①-P4-②-③	10	PCON-CFA	80	80	1500			10	117	167 200 <167>		<	250 <167>			200 <167>		160	140	120
RCP5-RA10C-WA-86P-5-①-P4-②-③	5	PCON-CFA	150	100	3000	50~800 (every 50mm)		5	83	83 12		;	110	90 80		70	60	55	50	45
RCP5-RA10C-WA-86P-2.5-①-P4-②-③	2.5	PCON-CFA	300	150	6000			2.5				63			55	50	45	40	35	30

Code explanation ① Stroke ② Cable length ③ Options

Stroke

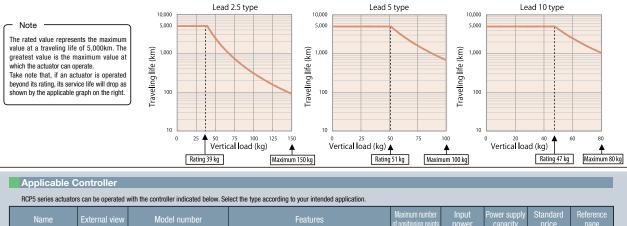
Stroke (mm)	Standard price	Stroke (mm)	Standard price
50	•	450	•
100		500	
150		550	
200	Contact IAL	600	Contact IAI.
250	GUITIAGE IAI.	650	GUIILAGE IAI.
300		700	
350		750	
400		800	

② Cable Le	ngth	
Туре	Cable symbol	Standard price
	P (1m)	—
Standard type	S (3m)	—
	M (5m)	—
	X06 (6m) ~X10 (10m)	—
Special length	X11 (11m) ~ X15 (15m)	—
	X16 (16m) ~ X20 (20m)	—
	R01 (1m) ~ R03 (3m)	—
	R04 (4m) ~R05 (5m)	—
Robot cable	R06 (6m) ~R10 (10m)	—
	R11 (11m) ~ R15 (15m)	—
	R16 (16m) ~ R20 (20m)	—


③ Option			
Name	Option code	See page	Standard price
Brake	В		
Optional cable exit direction (top)	CJT	1	
Optional cable exit direction (right)	CJR	1	
Optional cable exit direction (left)	CJL	—→P.10	Contact IAI.
Optional cable exit direction (bottom)	CJB		
Flange bracket	FL		
Non-motor end specification	NM	1	

Actuator Specifications							
Item	Description						
Drive system	Ball screw Ø20mm (lead 2.5/10mm), Ø16mm (lead 5mm), rolled C10						
Positioning repeatability	±0.02mm						
Lost motion	0.1mm or less						
Rod	Ø40mm Aluminum						
Rod non-rotation precision (*1)	±0 deg						
Allowable rod load mass	Refer to P. 26 and P. 35						
Rod tip overhang distance	100mm or less						
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)						

(*1) Accuracy of rod displacement in rotating direction when no load is received.




Since the RCP5-RA10C has a greater maximum thrust than other types, its service life varies significantly depending on the payload and push force applied when the actuator is installed vertically. When selecting an appropriate type from the correlation diagram of speed and payload or correlation diagram of push force and current-limiting value, check its traveling life on the correlation diagram of payload and service life as well as on the correlation diagram of push force and service life.

Name	External view	Model number	Features	of positioning points	power	capacity	price	page	
Positioner type	*	PCON-CFA-86PWAI-NP-=-0-=- PCON-CFA-86PWAI-PN-=-0-=-	Positioner type based on PIO control	512 points			-		
Pulse-train type		PCON-CFA-86PWAI-PLN0 PCON-CFA-86PWAI-PLP0	Pulse-train input type	—	DC24V	Refer to P. 46	-	Refer to P. 39	
Field network type		PCON-CFA-86PWAI-①-0-0-□	Supporting major field networks	768 points			-		
*In the model numbers shown above (1) indicates the field network execting (D)/ CC_DD_CN_MI_EC or ED)									

In the model numbers shown above, ① indicates the field network specification (DV, CC, PR, CN, ML, EC or EP).

Actuator Specifications														
Lead and Payload Stroke and Maximum Speed (unit: mm/s														
Model number	Lead (mm)	Connected controller	Maximun Horizontal (kg)	n payload Vertical (kg)	Maximum push force (N)	Stroke (mm)	Lead (mm)	50 (mm)	100~450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)
RCP5-RA8R-WA-60P-20-①-P4-②-③	20	PCON-CFA	30	5	500		20	280	400	360	320	280	240	220
RCP5-RA8R-WA-60P-10-①-P4-②-③	10	PCON-CFA	60	40	1000	50~700 (every 50mm)	10	2	200	180	160	140	120	110
RCP5-RA8R-WA-60P-5- ①-P4- ②- ③	5	PCON-CFA	100	70	2000		5	1	00	90	80	70	60	55

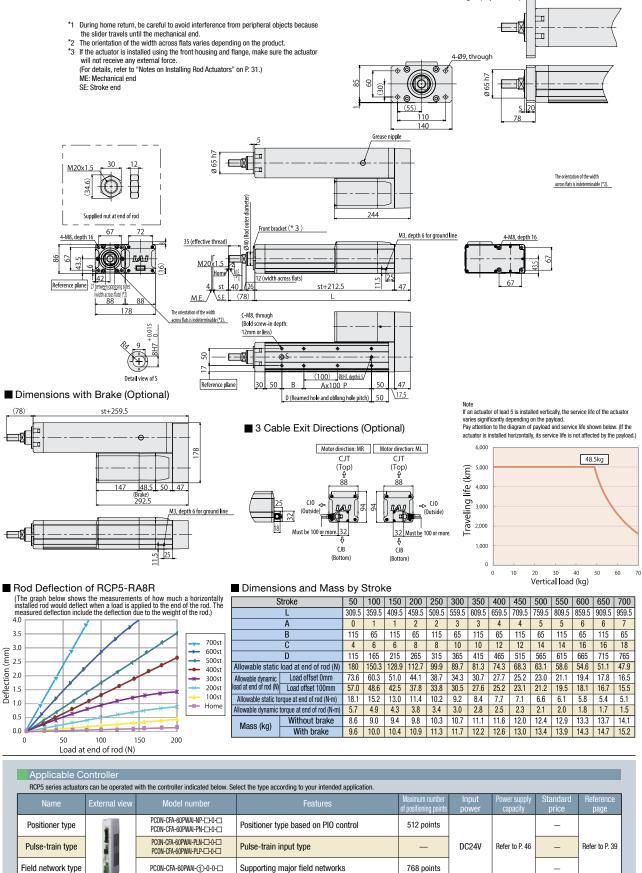
Code explanation 🛈 Stroke 🖉 Cable length 🕄 Options

Stroke

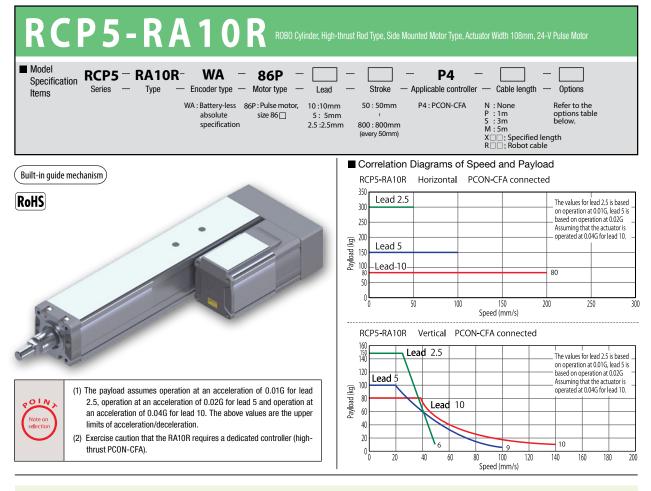
Stroke (mm)	Standard price	Stroke (mm)	Standard price			
50		400				
100		450				
150		500				
200	Contact IAI.	550	Contact IAI.			
250		600				
300		650				
350		700				

② Cable Length							
Туре	Cable symbol	Standard price					
	P(1m)	—					
Standard type	S(3m)	—					
	M(5m)						
	X06(6m) ~ X10(10m)	—					
Special length	X11(11m) ~ X15(15m)	—					
	X16(16m) ~ X20(20m)	—					
	R01(1m) ~ R03(3m)	—					
	R04(4m) ~R05(5m)	—					
Robot cable	R06(6m) ~R10(10m)	—					
	R11(11m) ~ R15(15m)	—					
	R16(16m) ~ R20(20m)	—					

③ Option			
Name	Option code	See page	Standard price
Brake	В		
Optional cable exit direction (top)	CJT	1	
Optional cable exit direction (outside)	CJO	1	
Optional cable exit direction (bottom)	CJB	$\rightarrow P10$	Contact IAI.
Motor side-mounted to the left (standard)	ML		CUITACLIAL
Motor side-mounted to the right	MR	1	
Flange bracket	FL	1	
Non-motor end specification	NM	1	


Actuator Specifications						
Item	Description					
Drive system	Ball screw Ø16mm, rolled C10					
Positioning repeatability	±0.02mm					
Lost motion	0.1mm or less					
Rod	Ø40mm Aluminum					
Rod non-rotation precision (*1)	±0 deg					
Allowable rod load mass	Refer to P. 28 and P. 35					
Rod tip overhang distance	100mm or less					
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)					

 $(\ensuremath{^{\star}1})$ Accuracy of rod displacement in rotating direction when no load is received.



*In the model numbers shown above, ① indicates the field network specification (DV, CC, PR, CN, ML, EC or EP).

(mm)

	Actuator Specifications																	
	Lead and Payload								Stro	oke i	and	Max	imum	Spe	ed		Th	ie values i
	Model number	Lead (mm)	Connected controller	Maximun Horizontal (kg)	n payload Vertical (kg)	Maximum push force (N)	Stroke (mm)		Lead (mm)	50 (mm)	100 (mm)	150 (mm)	200~400 (every 50mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)
RCP	5-RA10R-WA-86P-10- ①-P4- ②- ③	10	PCON-CFA	80	80	1500			10	117	167 <140>			200 <140))>			180 <140>
RCP	15-RA10R-WA-86P-5-①-P4-②-③	5	PCON-CFA	150	100	3000	50~800 (every 50mm)		5	83		100		90	80	70	60	
RCP	15-RA10R-WA-86P-2.5-①-P4-②-③	2.5	PCON-CFA	300	150	6000			2.5	50				45				

Code explanation 🛈 Stroke 🖉 Cable length 🕄 Options

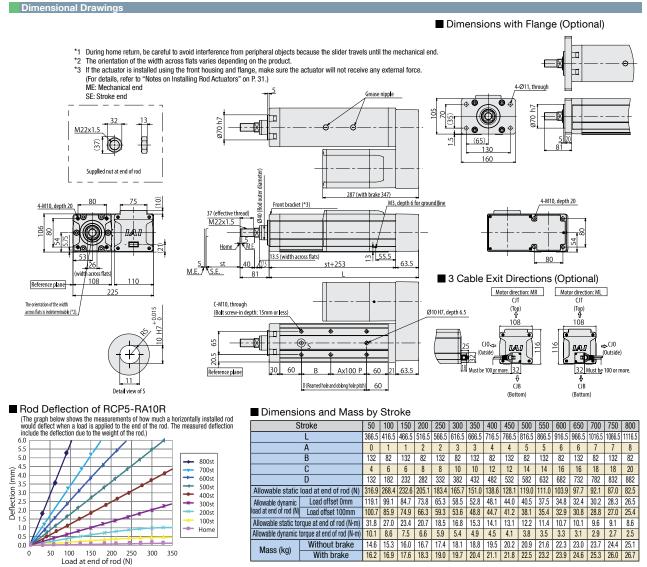
Stroke

Stroke (mm)	Standard price	Stroke (mm)	Standard price					
50		450						
100		500						
150		550						
200	Contact IAI.	600	Contact IAI.					
250	CUITAGE IAI.	650	OUTLAGE IAL					
300		700						
350		750						
400		800						

② Cable Le	ngth	
Туре	Cable symbol	Standard price
	P(1m)	—
Standard type	S(3m)	—
	M(5m)	—
	X06(6m) ~X10(10m)	—
Special length	X11(11m) ~ X15(15m)	—
	X16(16m) ~ X20(20m)	—
	R01(1m) ~ R03(3m)	—
Robot cable	R04(4m) ~ R05(5m)	—
	R06(6m) ~ R10(10m)	—
	R11(11m) ~ R15(15m)	—
	R16(16m) ~ R20(20m)	_

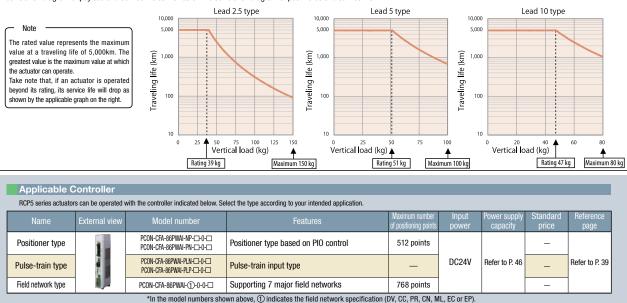
 $\label{eq:second} \begin{array}{|c|c|c|c|c|} \hline {\sf is} & {\sf second} \\ \hline {\sf is} & {\sf used} & {\sf vertically}, & {\sf (unit: mm/s)} \\ \hline {\sf 700} & 750 & 800 \\ {\sf (mm)} & {\sf (mm)} & {\sf (mm)} \\ \hline {\sf (mm)} & {\sf (mm)} & {\sf (mm)} \\ \hline {\sf 160} & 140 & 120 \\ \hline {\sf <140} & 140 \end{array}$

55 50 45


40 35 30

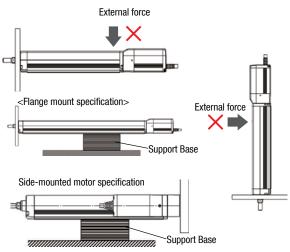
③ Option					
Name	Option code	See page	Standard price		
Brake	В				
Optional cable exit direction (top)	CJT				
Optional cable exit direction (outside)	CJO				
Optional cable exit direction (bottom)	CTB	→P.10	Contact IAI.		
Motor side-mounted to the left (standard)	ML		GUITIAGE IAL		
Motor side-mounted to the right	MR				
Flange bracket	FL				
Non-motor end specification	NM				

Actuator Specifications	
Item	Description
Drive system	Ball screw Ø20mm (lead 2.5/10mm), Ø16mm (lead 5mm), rolled C10
Positioning repeatability	±0.02mm
Lost motion	0.1mm or less
Rod	Ø40mm Aluminum
Rod non-rotation precision (*1)	±0 deg
Allowable rod load mass	Refer to P. 30 and P. 35
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)


 $(\ensuremath{^{\star}1})$ Accuracy of rod displacement in rotating direction when no load is received.

Correlation Diagrams of Vertical Load and Traveling Life

Since the RCP5-RA10R has a greater maximum thrust than other types, its service life varies significantly depending on the payload and push force applied when the actuator is installed vertically. When selecting an appropriate type from the correlation diagram of speed and payload or correlation diagram of push force and current-limiting value, check its traveling life on the correlation diagram of payload and service life as well as on the correlation diagram of push force and service life.

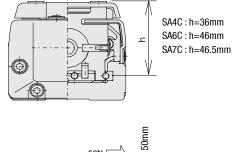


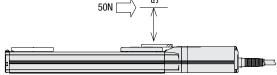
Points to Note/Selection __ RCP5_{series}

Notes on Installing Rod Actuators

When installing the actuator using the front housing or with a flange (optional), make sure that the actuator will not receive any external forces. (External forces may cause malfunction or damaged parts.) If the actuator will receive external forces or when the actuator is combined with a Cartesian robot, etc., use the mounting holes on the actuator base to secure the actuator.

Even when the actuator does not receive any external forces, provide a support base to support the actuator, as shown in the figure on the right, if the actuator is installed horizontally and secured using a flange or through the bracket mounting holes of the side-mounted motor specification.

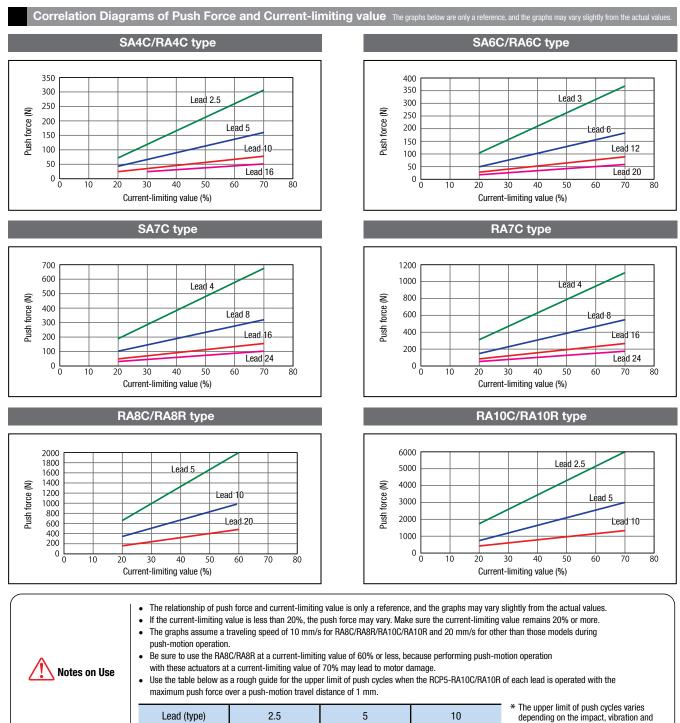

Selection Guideline (Correlation Diagram of Push Force and Current-limiting Value)


In push-motion operation, the push force can be used by changing the current-limiting value of the controller over a range of 20% to 70%. The maximum push-force varies depending on the model, so check the required push force from the graphs on the following pages and select an appropriate type meeting the purpose of use.

When performing push-motion operation using a slider actuator, limit the push current limit so that the reactive moment generated by the push force will not exceed 80% of the rated moment (Ma, Mb) specified in the catalog. To help with the moment calculations, the application position of the guide moment is shown in the figure below. Calculate the necessary moment by considering the offset of the push force application position. Note that if an excessive force exceeding the rated moment is applied, the guide may be damaged and the life may become shorter. Accordingly, include a sufficient safety factor when deciding on the push force.

Calculation example:

If push-motion operation is performed with an RCP5-SA7C by applying 50 N at the position shown to the right, the moment received by the guide, or Ma, is calculated as $(46.5+50) \times 50 = 4825$ (N·mm) = 4.825 (N·m).



Since the rated Ma moment of the SA7C is 10 (N·m), $10 \times 0.8 = 8 > 4.825$, suggesting that this selection is acceptable.

If an Mb moment generates due to push-motion operation, calculate the moment from the overhang and confirm, in the same way, that the calculated moment is within 80% of the rated moment.

2.5	5	10	* The upper limit of push cycles varies depending on the impact, vibration and other exercting conditions.
1.4 million cycles	25 million cycles	157.6 million cycles	other operating conditions. The cycles shown to the left assume no impact or vibration.

■ Points to Note on Push-motion Operation Using RCP5-RA10C/RA10R

Push cycles

The push force is limited on certain RA10C/RA10R models due to its relationship with the buckling load of the ball screw. (Refer to the table below.)

	(N)											
Items	Stroke 550 mm or less	Stroke 600 mm or less	Stroke 650 mm or less	Stroke 700 mm or less	Stroke 750 mm or less	Stroke 800 mm or less						
Lead 10		As shown in the push force graph										
Lead 5	As shown in the graph	2900	2500	2200	2000	1800						
Lead 2.5		As shown i	5900	5400								

Selection **_____RCP5**series

Selection Guideline (Tables of RCP5 Payload by Speed/Acceleration)

When operating the RCP5, increasing the speed/acceleration reduces the travel time, but it also causes the payload to drop. The tables below provide correlations between speed/acceleration and payload for different models, so check the applicable graph to see if the model you will be using meets the conditions you desire. Also note that the maximum speed, maximum acceleration and payload vary between the Power CON (high output setting) specification and the standard specification. Check your specification in each table (the upper tables represent the Power CON specification, while the lower tables represent the standard specification).

Power CON Specification

Horizontal

 Orientation
 Revel
 Acceleration (6)

 (mm/s)
 0.1
 0.3
 0.5
 0.7
 1
 0.1
 0.3
 0.5

 0
 12
 12
 12
 10
 10
 4.5
 4.5
 4.5

 40
 12
 12
 12
 10
 10
 4.5
 4.5
 4.5

 85
 12
 12
 12
 10
 10
 4.5
 4.5
 4.5

 11
 11
 11
 10
 10
 4.5
 4.5
 4.5

 10
 10
 10
 10
 10
 4.5
 4.5
 4.5

 10
 10
 10
 10
 10
 4.5
 4.5
 4.5

 10
 10
 10
 10
 10
 4.5
 4.5
 4.5

 10
 10
 10
 10
 10
 4.5
 4.5
 4.5

 10
 10
 10
 10
 10
 4.5
 4.5
 4.5

 10
 10
 10
 10
 10
 4.5
 4.5
 4.5

10 10 10 10 10 4.5 4.5 4.5

Vertical

Acceleration (G)
0.2 0.3 0.5 0.7 0.1 0.2 0.3

 12
 12
 12
 10
 4.5
 4.5
 4.5

 12
 12
 12
 10
 4.5
 4.5
 4.5

 40
 12
 12
 12
 10
 4.3
 4.3
 4.3

 85
 12
 12
 12
 12
 14
 14
 5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 4.5
 10
 10
 10
 10
 9
 8
 4
 4
 4
 12
 120
 10
 9
 8
 7
 4
 4
 4
 12
 10
 9
 8
 7
 6
 3.5
 3
 2.5
 1.5
 10
 9
 8
 7
 6
 3.5
 3
 12.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5

Orientation

130 175

215

260

305 350

Speed

(mm/s)

Standard Specification

Orientation Horizontal

Lead 5

Vertical

Lead 5

Power CON Specification

Standard Specification

Orientation Horizontal

Horizontal

 Ordertation
 Functional
 Ventual

 Speed
 Acceleration (6)
 (mm/s)
 0.1
 0.3
 0.5
 0.7
 1
 0.1
 0.3
 0.5

 0
 12
 12
 12
 12
 9
 9
 9

 20
 12
 12
 12
 12
 12
 9
 9
 9

 40
 12
 12
 12
 12
 12
 9
 9
 9

 12
 12
 12
 12
 12
 9
 9
 9

 12
 12
 12
 12
 12
 9
 9
 9

 12
 12
 12
 12
 12
 9
 9
 9

 12
 12
 12
 12
 12
 12
 9
 9
 9

 12
 12
 12
 12
 12
 9
 9
 9

 12
 12
 12
 12
 12
 9
 9
 9

 12
 12
 12
 12
 12
 9
 9
 9

Lead 2.5

Vertical

12 12 12 12 12 9 9 9

 Speed (mm/s)
 Acceleration (G)

 0.2
 0.3
 0.5
 0.7
 0.1
 0.2
 0.3

 12
 12
 12
 12
 9
 9
 9

 12
 12
 12
 12
 9
 9
 9

Orientation

65 85

105

130

150 175

20

100

150

Lead 2.5

Vertical

Lead 10

Vertical

2 2 2 1.5

Lead 10

Vertical

RCP5-SA4C

Power C	Lead 16							
Orientation		Ho	orizon	tal		۱	/ertica	ıl
Speed			Ac	celer	ation	(G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	4	4	4	4	4	1	1	1
140	4	4	4	4	4	1	1	1
280	4	4	4	4	4	1	1	1
420	4	4	4	4	4	1	1	1
560	4	4	4	4	4	1	1	1
700	4	4	4	4	4	1	1	1
840		4	4	4	3.5		1	1
980		4	4	3.5	3		1	1
1120		4	3	2	1.5		1	0.75
1260			2	1.5	1			0.5

Standard Specification Lead 16

Orientation		Horiz	ontal	Vertical				
Speed			Acce	leratio	on (G)			
(mm/s)	0.1	0.3	0.5	0.7	0.1	0.2	0.5	
0	4	4	4	3.5	1	1	1	
140	4	4	4	3.5	1	1	1	
280	4	4	4	3.5	1	1	1	
420	4	4	3.5	3	1	1	0.75	
560	4	3.5	3	2.5	1	0.75	0.75	
700	3.5	3	2.5	2	0.75	0.75	0.5	
840		2.5	2	1.5		0.5	0.5	

RCP5-SA6C

Power C	n	Lead 20						
Orientation		Ho	orizon	tal		1	/ertica	ıl
Speed			Ac	celera	ation	(G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	10	10	9	7	6	1	1	1
160	10	10	9	7	6	1	1	1
320	10	10	9	7	6	1	1	1
480	10	10	9	7	6	1	1	1
640	10	10	8	6	5	1	1	1
800	10	9	6.5	4.5	3	1	1	1
960		8	5	3.5	2		1	1
1120		6.5	3	2	1.5		0.5	0.5
1280			1	1	1			0.5
1440			1	0.5				

Standard Specification Lead 20

Orientation		Horiz	Ver				
Speed		Ac	ation (G)			
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	
0	6	6	4	4	0.5	0.5	
160	6	6	4	4	0.5	0.5	
320	6	6	4	4	0.5	0.5	
480	5	5	3	3	0.5	0.5	
640	4	4	2	2	0.5	0.5	
800	3	3	1	1	0.5	0.5	
960	2	2	1	0.5		0.5	

Power C	Lead 12							
Orientation		He	orizon	tal		1	/ertica	ıl
Speed			Ac	celer	ation	(G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	15	15	12.5	11	10	2.5	2.5	2.5
100	15	15	12.5	11	10	2.5	2.5	2.5
200	15	15	12.5	11	10	2.5	2.5	2.5
300	15	15	12.5	11	10	2.5	2.5	2.5
400	15	14	11	10	8.5	2.5	2.5	2.5
500	15	13	10	8	6.5	2.5	2.5	2.5
600	15	12	9	6	4	2.5	2.5	2.5
700	12	10	8	4	2.5	2.5	2.5	2
800	10	7	5	2	1	2	1.5	1
900		5	3	1	1		0.5	0.5
-								

Power CON Specification

Horizonta

Acceleration (G)
 0.1
 0.3
 0.5
 0.7
 1
 0.1
 0.3
 0.5

 10
 10
 10
 8
 8
 2.25
 2.25
 2.25

 10
 10
 10
 8
 8
 2.25
 2.25
 2.25

 10
 10
 10
 8
 8
 2.25
 2.25
 2.25

 10
 10
 10
 8
 8
 2.25
 2.25
 2.25

 10
 10
 10
 10
 0
 0
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 <th110</th>
 <th110</th>

 9
 9
 9
 8
 8
 2.25
 2.25
 2.25

 9
 9
 9
 8
 8
 2.25
 2.25
 2.25

 8
 8
 8
 8
 8
 2.25
 2.25
 2.25

 8
 8
 8
 7
 7
 2.25
 2.25
 2.25

 8
 8
 7
 6
 5
 2.25
 2.25
 2.25

 8
 8
 7
 6
 5
 2.25
 2.25
 2.25

 8
 6
 4
 3

 7
 4
 3
 3

Acceleration (G)
0.2 0.3 0.5 0.7 0.1 0.2 0.3

 10
 10
 9
 8
 2.25
 2.25
 2.25

 10
 10
 9
 8
 2.25
 2.25
 2.25

 10
 10
 9
 8
 2.25
 2.25
 2.25

 10
 10
 9
 8
 2.25
 2.25
 2.25

 9
 9
 8
 6
 2
 2

 8
 7
 6
 5
 2
 2
 2

 7
 6
 5
 4
 2
 1.5
 1.5

 6
 5
 4
 3
 1.5
 1
 1

Horizontal

Orientation

Speed

(mm/s) 0

85 175

260

435

525 610

700 785

Orientation

(mm/s)

175

260 350

Standard Specification

Standard	Standard Specification									
Orientation		Horiz	ontal		/	/ertica	ıl			
Speed		Acceleration (G)								
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	10	8.5	7	6	2	2	2			
100	10	8.5	7	6	2	2	2			
200	10	8.5	7	6	2	2	2			
300	9	8.5	7	6	2	2	2			
400	8	7	4	3.5	2	2	1.5			
500	7	6	3	2	1.5	1.5	1			
600	6	6	2	1.5	1	1	0.5			

Power C	ON S	Spee	cific	atio	n		Lead	d 6	
Orientation		Но	orizon	tal		١	/ertica	l	
Speed			Ac	celera	ation	(G)			
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	
0	25	25	20	16	14	6	6	6	
50	25	25	20	16	14	6	6	6	
100	25	25	20	16	14	6	6	6	
150	25	25	20	16	14	6	6	6	
200	25	25	20	16	14	6	6	6	
250	25	25	20	16	14	6	6	5.5	
300	25	25	20	15	11	6	5.5	5	
350	25	20	14	12	9	6	4.5	4	
400	25	16	10	8	6.5	4.5	3.5	3	
450	18	12	6	5	2.5	3.5	2	2	

Standard	I Sp	ecifi	cati	on	Lead 6			
Orientation		Horiz	ontal		Vertical			
Speed			Acce	leratio	on (G)			
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3	
0	16	15	13	12	5	5	5	
50	16	15	13	12	5	5	5	
100	16	15	13	12	5	5	5	
150	16	15	13	12	5	5	5	
200	16	15	13	12	5	4.5	4	
250	15	12	10	7	4	4	3	
300	13	12	6	4	3	2.5	2	

	12	12	12	12	9	9	9	
40	12	12	12	12	9	9	9	
65	12	12	11	11	8	8	8	
85	12	11	10	10	8	8	8	
105	12	10	10	9	8	8	8	
130	12	10	9	8	5	5	5	
Power C	ON :	Spee	cific	atio	n	Le	ad :	3
Orientation		Но	orizon	tal		1	ertica	ıl
		-						
Speed			Ac	celer	ation	(G)		
Speed (mm/s)	0.1	0.3	Ac 0.5	celer 0.7	ation ((G) 0.1	0.3	0.5
	0.1	0.3			-		0.3	0.5
(mm/s)			0.5	0.7	1	0.1		
(mm/s) 0	25	25	0.5 25	0.7	1 25	0.1	16	16
(mm/s) 0 20	25 25	25 25	0.5 25 25	0.7 25 25	1 25 25	0.1 16 16	16 16	16 16
(mm/s) 0 20 40	25 25 25	25 25 25	0.5 25 25 25	0.7 25 25 25	1 25 25 25	0.1 16 16 16	16 16 16	16 16 16
(mm/s) 0 20 40 65	25 25 25 25	25 25 25 25	0.5 25 25 25 25 25	0.7 25 25 25 25 25	1 25 25 25 25 25	0.1 16 16 16 16	16 16 16 16	16 16 16 16
(mm/s) 0 20 40 65 85	25 25 25 25 25 25	25 25 25 25 25 25	0.5 25 25 25 25 25 25	0.7 25 25 25 25 25 25	1 25 25 25 25 25 25	0.1 16 16 16 16 16	16 16 16 16 16	16 16 16 16 16
(mm/s) 0 20 40 65 85 105	25 25 25 25 25 25 25	25 25 25 25 25 25 25	0.5 25 25 25 25 25 25 25	0.7 25 25 25 25 25 25 25 25	1 25 25 25 25 25 25 25	0.1 16 16 16 16 16 16 16 16	16 16 16 16 16 16	16 16 16 16 16 16
(mm/s) 0 20 40 65 85 105 130	25 25 25 25 25 25 25 25 25	25 25 25 25 25 25 25 25 25	0.5 25 25 25 25 25 25 25 25 25	0.7 25 25 25 25 25 25 25 25 25	1 25 25 25 25 25 25 25 225 22.5	0.1 16 16 16 16 16 16 16 16 16	16 16 16 16 16 16 16 14	16 16 16 16 16 16 16 13

Standard Specification Lead 3 Specification Lead 3 Orientation Horizontal Lead 3 Speed (mm/s) 0.2 0.3 0.7 0.1 0.2 0.3 0 19 19 10 10 10 10 25 19 19 19 19 10 10 10 Orientation Horizontal 10 10 10 10 10 10 19 19 19 19 19 10 10 10 19 19 19 19 10 10 10 10 75

 10
 10
 10
 10
 10
 10
 10

 19
 16
 14
 12
 10
 9
 8


 18
 14
 11
 10
 7
 6
 6

16 13 10 9 5 4.5 3

RCP5-SA7C

Power C	Power CON Specification Lead 24										
Orientation		Ho	orizon	tal		1	/ertica	ıl			
Speed			Ac	celer	ation	(G)					
(mm/s)	0.1	0.1 0.3 0.5 0.7 1 0.1 0.3 0.5									
0	20	20 20 18 16 14 3 3									
200	20	20	18	16	14	3	3	3			
400	20	20	18	16	14	3	3	3			
600	20	16	15	10	9	3	3	3			
800	16	12	10	7	4		3	2.5			
1000		8 4.5 4 2 2 1.5									
1200		5.5	2	2	1		1	1			

Standard	l Sp	ecifi	cati	on	L	_ead	24
Orientation		Horiz	ontal		Ver	tical	
Speed		Ac	celera	ation	(G)		
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	
0		6				2	
200		6				2	
400		6				2	
600		5				1.5	
800		4				1	

Standard Specification Lead 16 Orientation Horizontal Vertical Acceleration (G) 0.2 0.3 0.5 0.7 0.1 0.2 0.3 (mm/s) 35 35 5 140 25 3 1.5 15 560 7 0.5

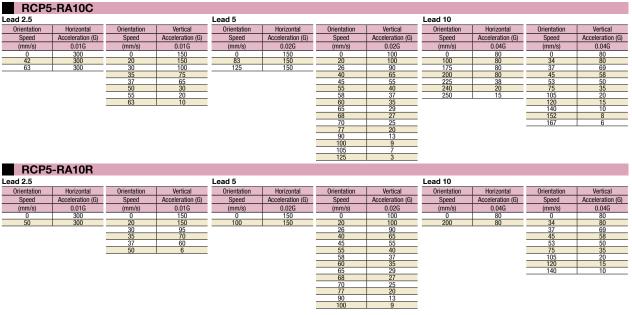
Power C	ON :	Spee	cific	atio	n		Lead	8 b
Orientation		Но	orizon	tal		1	/ertica	ıl
Speed			Ac	celera	ation	(G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	45	45	45	40	40	16	16	16
70	45	45	45	40	40	16	16	16
140	45	45	40	38	35	16	16	16
210	45	40	35	30	24	11	10	9.5
280	40	30	25	20	15	9	8	7
350	35	20	9	4		7	5	4
420	25	7				5	2	
490	15					2		

Standard Specification Lead 8

Orientation		Horiz	ontal	\	/ertica	ıl		
Speed				leratio	n (G)			
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3	
0		40			10			
70		40				10		
140		40				7		
210		25				4		
280		10				1.5		

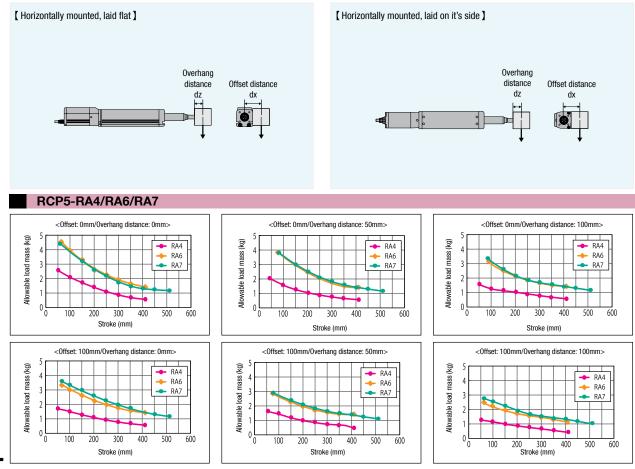
Power C	Power CON Specification									
Orientation		He	orizon	tal		1	/ertica	ıl		
Speed			Ac	celera	ation	(G)				
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		
0	45	45	45	40	40	25	25	25		
35	45	45	45	40	40	25	25	25		
70	45	45	45	40	40	25	25	25		
105	45	45	45	40	35	22	20	19		
140	45	45	35	30	25	16	14	12		
175	45	30	18			11	9	7.5		
210	40	40 8 8								
245	35									

Standard	l Spe	ecifi	cati	on	Lead 4				
Orientation		Horiz	ontal	Vertical					
Speed			Acce	leratio	on (G)				
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3		
0	40					15			
35	40					15			
70	40					15			
105	40					10			
140	40					5			


RCP5-RA4C			
Power CON Specification Lead 16	Power CON Specification Lead 10 Orientation Horizontal Vertical	Power CON Specification Lead 5	Power CON Specification Lead 2.5
Orientation Horizontal Vertical Speed Acceleration (G) (mm/s) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0 6 6 5 3.5 1.5 1 1.5 140 6 6 6 5 3.5 1.5 1 1.5 280 6 6 6 5 3.5 1.5 1 1.5 420 6 6 6 5 3.5 1 1 1 560 6 6 5 3.5 1 1 1 700 5.5 5 4 2.5 1 1 1 940 4.5 3.5 3 2 1 1 1 940 2.5 2 1.5 1 0.7 1 1	Orientation Horizontal Vertical Speed Acceleration (G) (m(x)) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0 15 15 13 13 12 2.5 2.5 2.5 85 15 15 13 13 12 2.5 2.5 2.5 260 15 15 13 13 12 2.5 2.5 2.5 260 15 15 13 13 12 2.5 2.5 2.5 260 15 15 13 13 12 2.5 2.5 2.5 350 15 15 13 13 10 2.5 2.5 2.5 435 15 15 13 11 9 2.5 2.5 6.10 9 7 5 4 2.5 2.5 2.5 6.10 9 7 5 3 2	Orientation Horizontal Vertical Speed Acceleration (5) (7) 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 5 5 5 5 8 28 22 20 20 5 5 5 1 8 25 22 20 20 5 5 5 1 8 25 22 20 20 5 5 5 1 5 5 1 5 5 1 1 0.2 2 20 20 5 5 5 1 1 28 25 22 20 20 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	Orientation Horizontal Vertical Speed ∧cceleration (6) (7) 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0.0 10 10 0.5 0.0 10 10 0.5 0.0 10 10 0.5 0.0 10 10 0.5 0.0 1
Standard Specification Lead 16	Standard Specification Lead 10	Standard Specification Lead 5	Standard Specification Lead 2.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Orientation Horizontal Vertical Speed Acceleration (G) (mm/s) 0.1 0.3 0.5 0 15 15 13 12 12 2.5 2.5 0 15 15 13 12 12 2.5 2.5 2.5 85 15 13 12 12 2.5 2.5 2.5 260 12 15 13 12 12 2.5 2.5 2.5 350 12 15 13 12 12 2.5 2.5 2.5 360 12 15 13 12 12 2.5 2.5 2.5 360 12 15 13 12 12 2.5 2.5 2.5 343 12 12 17 7 2.25 2.5 2.5 525 11 8 4 4 2 2 1 610 6 <th>Orientation Horizontal Vertical Speed Acceleration (6) (10,10,3,0,5,0,7,1,0,3,0,5,0,7,1,0,3,0,5,0,7,1,0,3,0,5,0,7,1,0,3,0,5,0,7,1,0,3,0,0,7,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</th> <th>Orientation Horizontal Vertical Speed Acceleration (6) (7)</th>	Orientation Horizontal Vertical Speed Acceleration (6) (10,10,3,0,5,0,7,1,0,3,0,5,0,7,1,0,3,0,5,0,7,1,0,3,0,5,0,7,1,0,3,0,5,0,7,1,0,3,0,0,7,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	Orientation Horizontal Vertical Speed Acceleration (6) (7)
RCP5-RA6C			
Power CON Specification Lead 20	Power CON Specification Lead 12	Power CON Specification Lead 6	Power CON Specification Lead 3
Orientation Horizontal Vertical Speed Acceleration (G) (mm/s) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0 6 6 6 5 5 1.5 1.5 1.5 160 6 6 5 5 1.5 1.5 1.5 220 6 6 6 5 3 1.5 1.5 480 6 6 5 3 1.5 1.5 1.5 640 6 6 5 3 2 1.5 1.5 800 4 3 2 1 1 1	Orientation Horizontal Vertical Speed Acceleration (G) (mm/k) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0 25 25 18 16 12 4 4 4 100 25 25 18 16 12 4 4 4 200 25 25 18 16 12 4 4 4 200 25 25 18 16 12 4 4 4 300 25 25 18 16 12 4 4 4 400 20 20 14 10 6 4 4 4 500 15 15 8 6 4 4 3 2 700 6 2 2 1 1 1 3 2 1 3 2 1 3 2	Orientation Horizontal Vertical Speed Acceleration (6) (mm/8) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0 40 40 35 30 25 10 10 10 50 40 40 35 30 25 10 10 10 100 40 40 35 30 25 10 10 10 100 40 40 35 22 10 10 10 100 40 40 35 22 10 10 10 200 40 40 35 22 10 10 10 200 40 40 35 25 20 10 10 10 200 40 40 32 12 14 6 6 6 300 40 30 18 10 6 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Standard Specification Lead 20	Standard Specification Lead 12	Standard Specification Lead 6	Standard Specification Lead 3
Orientation Horizontal Vertical Speed Acceleration (6) 0.2 0.3 0.5 0.7 0.1 0.2 6 1.5 1.6 1.5 320 6 1.5 1.5 480 4 1 1 640 3 0.5 0.5	Orientation Horizontal Vertical Speed Acceleration (6) (7)	Orientation Horizontal Vertical Speed Acceleration (S) (S)	Orientation Horizontal Vertical Speed Acceleration (G) (G) (mm/s) 0.2 0.3 0.5 0.7 0.1 0.2 0.3 0 40 20
RCP5-RA7C			
Power CON Specification Lead 24 Orientation Horizontal Vertical Speed Acceleration (6) Vertical (mm/s) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0 20 20 18 15 12 3 3 200 20 20 18 15 12 3 3 400 20 20 18 15 12 3 3 3 600 15 14 9 7 4 3 3 2 800 5 1 1 3 3 2	Power CON Specification Lead 16 Orientation Horizontal Vertical Speed Acceleration (S) Vertical (mm/s) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0 50 50 40 35 30 8 8 8 140 50 50 435 30 8 8 8 28 20 8 7 7 420 50 50 14 10 6 45 4 560 12 10 5 3 2 4 2 1 700 3 2	Orientation Lead 8 Orientation Horizontal Vertical Speed Acceleration (6) - (mm/s) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0 60 60 50 45 40 18 18 18 70 60 60 50 45 40 18 18 18 140 60 60 50 45 40 16 16 12 210 60 60 31 25 11 18 7 6 350 60 14 5 1 3 3 2 420 15 1 3 3 2 420 15 1 3 3 2	Power CON Specification Lead 4 Orientation Horizontal Vertical Speed Acceleration (6) Unit (2) (mm/s) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0 80 80 70 65 60 28 28 28 35 80 80 70 65 60 28 28 28 70 80 80 70 65 60 28 28 28 105 80 80 70 65 60 28 28 28 105 80 80 50 30 20 15 16 12 10 175 50 15 9 4 2 2 18
Standard Specification Lead 24 Orientation Horizontal Vertical	Standard Specification Lead 16	Standard Specification Lead 8	Standard Specification Lead 4
Orientation Horizontal Vertical Speed Acceleration (6) (mm/s) 0.2 0.3 0.5 0.7 0.1 0.2 0 1.8 0.7 0.1 0.2 0.3 0.4 <	Orientation Horizontal Vertical Speed Acceleration (G) (G) (mm/s) 0.2 0.3 0.7 0.1 0.2 0.3 0 40 5 5 5 5 5 280 30 3 420 15 1 1	Orientation Horizontal Vertical Speed Acceleration (G) (G) (mm/s) 0.2 0.3 0.7 0.1 0.2 0.3 0 50 0.7 0.1 0.2 0.3 70 50 17.5 17.5 140 50 7 2 210 30 2 2	Orientation Horizontal Vertical Speed Acceleration (G) (G)
RCP5-RA8C			
Lead 5 Orientation Horizontal Orientation	Lead 10 Vertical Orientation Horizontal	Orientation Vertical Orientation	Horizontal Orientation Vertical
Speed Acceleration (G) Speed	Acceleration (G) Speed Acceleration (G)	Speed Acceleration (G) Speed	Acceleration (G) Speed Acceleration (G)
(mm/s) 0.1G (mm/s) 0 100 0 00 100 40	0.1G (mm/s) 0.2G 70 0 60 70 0 0 0	(mm/s) 0.2G (mm/s) 0 40 0	0.2G (mm/s) 0.2G 30 0 5 50 5
<u>90 100 48</u> 120 100 60 120 00 70	70 150 60 50 200 45 35 240 40	88 40 240 100 33 270	30 50 5 30 100 5 20 150 5
130 90 70 140 75 80	25 300 10	110 28 300 120 23 360	30 150 5 24 180 5
150 60 90 100	20 15	130 18 420 140 15 450	16 200 5 12 240 5

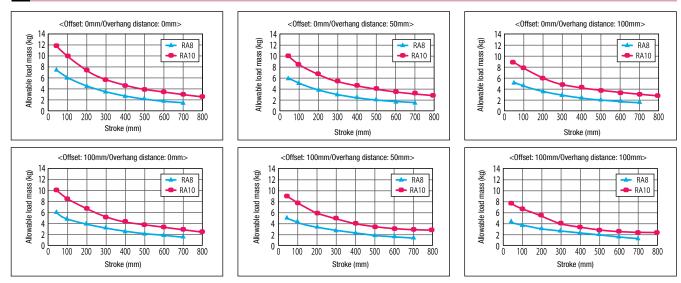
Speed	Acceleration (G)										
(mm/s)	0.1G	(mm/s)	0.1G	(mm/s)	0.2G	(mm/s)	0.2G	(mm/s)	0.2G	(mm/s)	0.2G
0	100	0	70	0	60	0	40	0	30	0	5
90	100	48	70	150	60	88	40	240	30	50	5
120	100	60	50	200	45	100	33	270	30	100	5
130	90	70	35	240	40	110	28	300	30	150	5
140	75	80	25	300	10	120	23	360	24	180	5
150	60	90	20			130	18	420	16	200	5
		100	15			140	15	450	12	240	5
		120	10			150	11	480	10	300	5
		150	2			160	10	510	8	360	5
						170	8	540	6	400	3
						180	7	600	5	420	2.5
						190	5			450	2
						200	4				
						220	3				
						250	2				
RCP5	-RA8R										
	-										

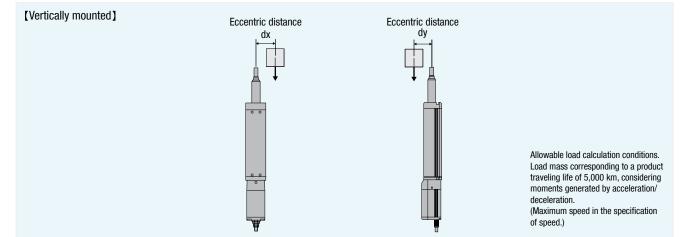
_ead 5				Lead 10				Lead 20			
Orientation	Horizontal	Orientation	Vertical	Orientation	Horizontal	Orientation	Vertical	Orientation	Horizontal	Orientation	Vertical
Speed	Acceleration (G)										
(mm/s)	0.1G	(mm/s)	0.1G	(mm/s)	0.2G	(mm/s)	0.2G	(mm/s)	0.2G	(mm/s)	0.2G
0	100	0	70	0	60	0	40	0	30	0	5
90	100	45	70	160	60	80	40	300	30	300	5
100	75	60	45	170	40	90	34	350	14	330	3.5
		70	35	180	25	100	28	400	6	360	2
		80	25	190	15	110	23			400	0.5
		90	16	200	12	120	18				
		100	10			130	15				
						140	12				
						150	10				
						160	8				
						170	6				
						180	4				
						190	3				
						200	2				

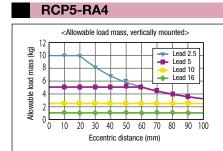


Selection References (Guide for Selecting Allowable Load for Radial Cylinder)

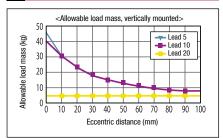
The radial cylinder has a built-in guide, so loads up to a certain level can be applied to the rod without using an external guide. Refer to the graphs below for the allowable load mass. If the allowable load will be exceeded under the required operating conditions, add an external guide.


■ Allowable load mass for RCP5, horizontally mounted

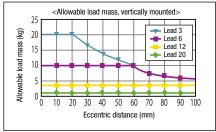

35

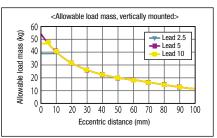

Sold & Serviced By: ELECTROMATE Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

RCP5-RA8/RA10



■ Allowable load mass for RCP5, vertically mounted




RCP5-RA8

RCP5-RA6

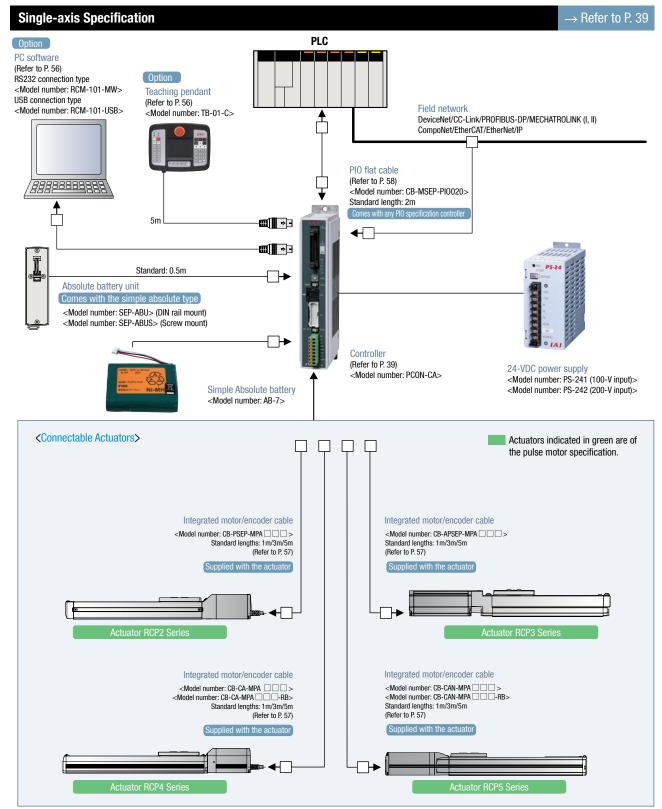
RCP5-RA10

<Allowable load mass, vertically mounted> 30 Allowable load mass (kg) 25 - Lead 4 . 20 Lead 16 ÷ Lead 24 15 10 0

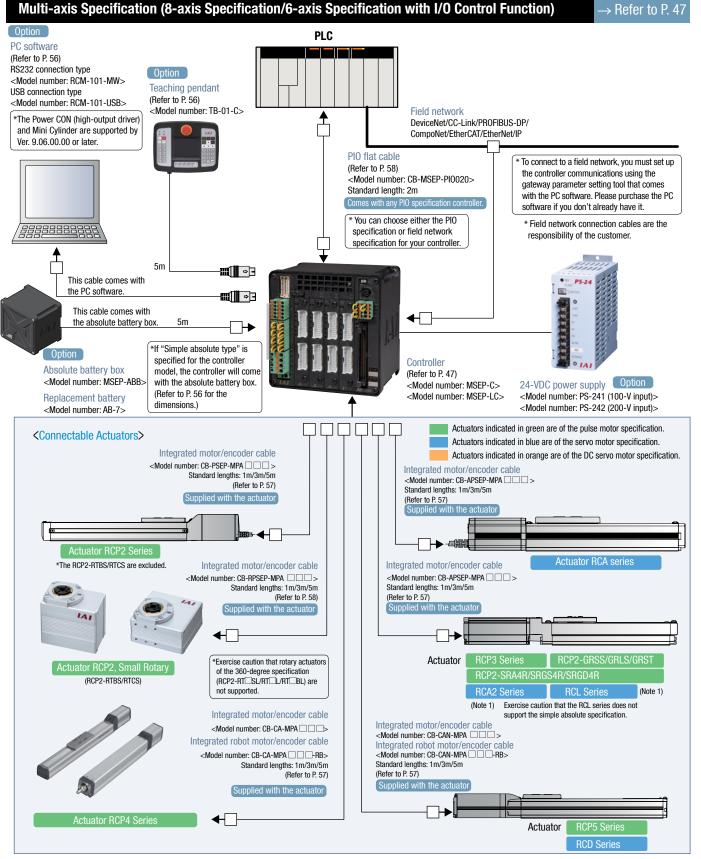
30 40 50 60 70

Eccentric distance (mm)

80 90 100


RCP5-RA7

20



System Configuration **_____RCP5**_{series}

System Configuration

Sold & Serviced By: ELECTROMATE Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

Controller < PCON-CA/CFA> __RCP5series

CON-CA/CFA

RCP5/RCP4 <Power CON Type> RCP3/RCP2 Position Controllers

1 Built-in high-output driver designed exclusively for RCP5/RCP4 generates greater torque at high speed

The newly developed high-output driver (patent pending) achieves significantly improved specifications compared to conventional models (RCP2 series), with the acceleration/ deceleration higher by 1.4 times, maximum speed by 1.5 times, and payload twice as large.

(*) The rates of improvement vary depending on the type. (*) The RCP3/RCP2 are also supported.

Supporting the battery-less absolute encoder

The RCP5 equipped with a battery-less absolute encoder is supported. Since no battery is needed to retain position data, less space is needed to install the control panel, which in turn leads to lower cost of your equipment.

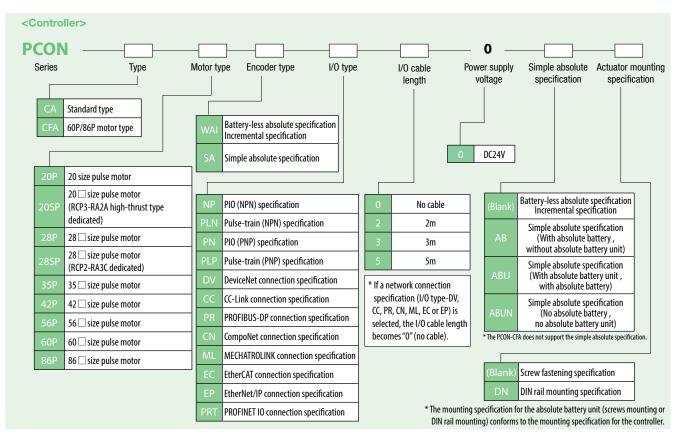
Common boards ensures greater ease of maintenance

While conventional controllers require a separate set of boards for each actuator, the PCON-CA/CFA use common boards for all actuators, meaning that actuators of different models such as RCP5, RCP4, RCP3 and RCP2 can be operated simply by changing the controller settings. The result is significant reduction in maintenance stock.

Smart tuning function, maintenance information, calendar function

The takt time minimization function sets an optimal acceleration/deceleration rate according to the load that is available (*). You can also record the number of times the actuator has moved and the distance that it has travelled, for use in maintenance.

(*) You need PC software Ver. 8.03.00.00 or later or a CON-PTA (teaching pendant) to use the takt time minimization function.

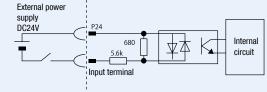

List of Models

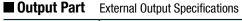
ROBO Cylinder Position Controller PCON-CA/CFA

						Field network type								
	I/O type		Positioner	Pulse-train	DeviceNet	CC-Link	₽ŖŎĔŢ [®] BŪS	CompoNet	MECHATROLINK	Ether CAT ,	EtherNet/IP	<u>PROFU</u> ® Net		
7		type	type	DeviceNet connection specification	CC-Link connection specification	PROFIBUS-DP connection specification	CompoNet connection specification	MECHATROLINK connection specification	EtherCAT connection specification	EtherNet/IP connection specification	PROFINET IO connection specification			
	I/O type model number		NP/PN	PLN/PLP	DV	CC	PR	CN	ML	EC	EP	PRT		
	Battery-less absolute specification Incremental specification		_	_		_	_	_	_		_	_		
		with absolute battery		_		_	_	_	_		_	—		
	absolute specification	absolute battery unit	_	_		_	_	_	_	_	_	_		
		specification	specification		No absolute battery					_	_	_		_
PCON-CFA Battery-less absolute specification Incremental specification				_			_	_	_					

* If the RCP5 is used with pulse-train I/Os, the actuator must complete a home return prior to operation, as with any incremental actuator.

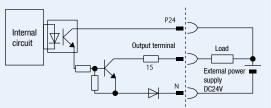
Model Specification Items

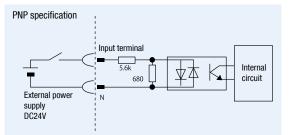




Controller < PCON-CA/CFA>__RCP5series

PIO I/O Interface


Input Part	External Input Specifications
Item	Specification
Input voltage	DC24V ±10%
Input current	5 mA, 1 circuit
ON/OFF voltage	ON voltage: 18 VDC min. OFF voltage: 6 VDC max.
NPN specification	1



Item	Specification
Load voltage	DC24V
Maximum load current	50 mA, 1 circuit
Leak current	2 mA max. per point

NPN specification

PNP specification P24 External power Internal supply DC24V circuit Output terminal Load -N

Types of PIO Patterns (Control Patterns)

This controller supports seven types of control methods. Select in Parameter No. 25, "PIO pattern selection" the PIO pattern that best suits your purpose of use.

Туре	Set value of Parameter No. 25	Mode	Overview		
PIO pattern 0	0 (factory setting)	Positioning mode (standard type)	Number of positioning points: 64 points Position number command: Binary Coded Decimal (BCD) Zone signal output*1:1 point Position zone signal output*2:1 point		
PIO pattern 1	0 pattern 1 1 Teac (teac		 Number of positioning points: 64 points Position number command: Binary Coded Decimal (BCD) Position zone signal output*2:1 point Jog (inching) operation using PIO signals is supported. Current position data can be written to the position table using PIO signals. 		
PIO pattern 2	2	256-point mode (256 positioning points)	Number of positioning points: 256 points Position number command: Binary Coded Decimal (BCD) Position zone signal output*2:1 point		
PIO pattern 3	3	512-point mode (512 positioning points)	 Number of positioning points: 512 points Position number command: Binary Coded Decimal (BCD) No zone signal output 		
PIO pattern 4	4	Solenoid valve mode 1 (7-point type)	 Number of positioning points: 7 points Position number command: Individual number signal ON Zone signal output*1:1 point Position zone signal output*2:1 point 		
PIO pattern 5	5	Solenoid valve mode 2 (3-point type)	Number of positioning points: 3 points Position number command: Individual number signal ON Completion signal: A signal equivalent to a LS (limit switch) signal can be output. Zone signal output*1:1 point Position zone signal output*2:1 point		
PIO pattern 6 (Note 1)	6	Pulse-train control mode	Differential pulse input (200 kpps max.) Home return function Zone signal output*1:2 points No feedback pulse output		

* 1 Zone signal output: A desired zone is set by Parameter Nos. 1 and 2 or 23 and 24, and the set zone always remains effective once home return has completed.
* 2 Position zone signal output: This function is available as part of a position number. A desired zone is set in the position table and becomes effective only when the corresponding position is specified, but not with commands specifying other positions.
(Note 1) Pulse Train Control Model is available only if the pulse train control type is indicated (from PCON-CA-PLN and PLP) at the time of purchase.

PIO Patterns and Signal Assignments

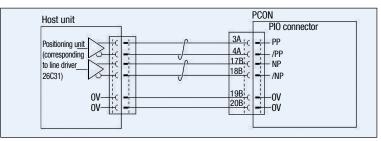
The table below lists the signal assignments for the I/O flat cable under different PIO patterns. Connect an external device (such as a PLC) according to this table.

			Parameter No. 25, "PIO pattern selection"						
	Category	PIO function	0	1	2	3	4	5	
			Positioning mode	Teaching mode	256-point mode	512-point mode	Solenoid valve mode 1	Solenoid valve mode 2	
		Number of positioning points	64 points	64 points	256 points	512 points	7 points	3 points	
		Home return signal	0	0	0	0	0	×	
Pin number	Input	Jog signal	×	0	×	×	×	×	
		Teaching signal (writing of current position)	×	0	×	×	×	×	
		Brake release	0	×	0	0	0	0	
		Moving signal	0	0	×	×	×	×	
	Output	Zone signal	0	△ (Note 1)	△ (Note 1)	×	0	0	
		Position zone signal	0	0	0	×	0	0	
1A	24V				P24	^ 		-	
2A	24V				P24				
3A	Dulas input				_				
4A	Pulse input				_				
5A		INO	PC1	PC1	PC1	PC1	ST0	ST0	
6A		IN1	PC2	PC2	PC2	PC2	ST1	ST1(J0G+)	
7A		IN2	PC4	PC4	PC4	PC4	ST2	ST2(Non-Functional)	
8A		IN3	PC8	PC8	PC8	PC8	ST3	_	
9A		IN4	PC16	PC16	PC16	PC16	ST4	—	
10A		IN5	PC32	PC32	PC32	PC32	ST5	_	
11A		IN6	_	MODE	PC64	PC64	ST6	_	
12A	Innet	IN7	_	JISL	PC128	PC128	_	_	
13A	Input	IN8	_	JOG+	—	PC256	—	—	
14A		IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	
15A		IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	
16A		IN11	HOME	HOME	HOME	HOME	HOME	_	
17A		IN12	*STP	*STP	*STP	*STP	*STP	—	
18A		IN13	CSTR	CSTR/PWRT	CSTR	CSTR	—	—	
19A		IN14	RES	RES	RES	RES	RES	RES	
20A		IN15	SON	SON	SON	SON	SON	SON	
1B		OUTO	PM1(ALM1)	PM1(ALM1)	PM1(ALM1)	PM1(ALM1)	PE0	LS0	
2B		OUT1	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PE1	LS1(TRQS)	
3B		OUT2	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PE2	LS2 (Note2)	
4B		OUT3	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PE3	_	
5B		OUT4	PM16	PM16	PM16	PM16	PE4	—	
6B		OUT5	PM32	PM32	PM32	PM32	PE5	—	
7B		OUT6	MOVE	MOVE	PM64	PM64	PE6	—	
8B	Output	OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	
9B	output	OUT8	PZONE/ZONE2	PZONE/ZONE1	PZONE/ZONE1	PM256	PZONE/ZONE2	PZONE/ZONE2	
10B		OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	
11B		0UT10	HEND	HEND	HEND	HEND	HEND	HEND	
12B		0UT11	PEND	PEND/WEND	PEND	PEND	PEND	—	
13B		0UT12	SV	SV	SV	SV	SV	SV	
14B		0UT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	
15B		0UT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	
16B		0UT15	LOAD/TRQS *ALML	*ALML	LOAD/TRQS *ALML	LOAD/TRQS *ALML	LOAD/TRQS *ALML	*ALML	
17B	Pulse input								
18B					—				
19B	0V				N				
20B	0V				Ν				

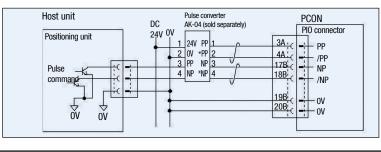
(Note) In the table above, asterisk * symbol accompanying each code indicates a negative logic signal. PM1 to PM8 are alarm binary code output signals that are used when an alarm generates.

(Note 1) In all PIO patterns other than 3, this signal can be switched with PZONE by setting Parameter No. 149 accordingly. (Note 2) The setting will not become effective until the home return is completed.

Reference) Negative logic signal


Signals denoted by * are negative logic signals. Negative logic input signals are processed when turned OFF. Negative logic output signals normally remain ON while the power is supplied, and turn OFF when the signal is output. Note: The names of the signals above inside () are functions before the unit returns home.

Controller < PCON-CA/CFA>__RCP5series


Pulse-train Control Circuit

■ Host Unit = Differential Type

■ Host Unit = Open Collector Type

The AK-04 (optional) is needed to input pulses.

Caution: Use the same power supply for open collector input/output to/from the host and for the AK-04.

Command Pulse Input Patterns

∕∖∖

	Command pulse-train pattern	Input terminal	Forward	Reverse
	Forward pulse-train	PP ·/PP		
	Reverse pulse-train	NP ·/NP		
.9			icates the amount of motor rotation in the form ndicates the amount of motor rotation in the r	
Negative logic	Pulse-train	PP ·/PP		
Negati	Sign	NP ·/NP	Low	High
	The comma	and pulses indicate the a	mount of motor rotation, while the sign indicat	es the rotating direction.
	Phase A/B pulse-train	PP ·/PP		
	Filase AVD pulse-train	NP ·/NP		
	Command phases A and	d B having a 90° phase d	lifference (multiplier is 4) indicate the amount	of rotation and the rotating direction.
	Forward pulse-train	PP ·/PP		
	Reverse pulse-train	NP ·/NP		
Positive logic	Pulse-train	PP ·/PP		
Positiv	Sign	NP ·/NP	High	Low
	Phase A/B pulse-train	PP ·/PP		
	Thase AVD pulse-traili	NP ·/NP		

I/O Signals in Pulse-train Control Mode

The table below lists the signal assignments for the flat cable in the pulse-train control mode. Connect an external device (such as PLC) according to this table.

Pin number	Category	I/O number	Signal abbreviation	Signal name	Parameter No. 25, "PIO pattern 6"
1A	24V		P24	Power supply	I/O power supply +24 V
2A	24V		P24	Power supply	I/O power supply +24 V
ЗA	Dulas innut		PP	Differential pulse-train input (+)	Differential sulces are insut from the best Up to 000 lung can be insut
4A	Pulse input	\square	/PP	Differential pulse-train input (-)	Differential pulses are input from the host. Up to 200 kpps can be input.
5A		NO	SON	Servo ON	The servo is ON while this signal is ON, and OFF while the signal is OFF.
6A		IN1	RES	Reset	Present alarms are reset when this signal is turned ON.
7A	IN2		HOME	Home return	Home return operation is performed when this signal is turned ON.
8A		IN3	TL	Torque limit selection	When this signal is turned ON, the motor torque is limited to the value set by the parameter.
9A		IN4	CSTP	Forced stop	The actuator is forcibly stopped when this signal has remained ON for 16 ms or more. The actuator decelerates to a stop at the torque set in the controller and the servo turns OFF.
10A		IN5	DCLR	Deviation counter clear	This signal clears the deviation counter.
11A		IN6	BKRL	Forced brake release	The brake is forcibly released.
12A	Input	IN7	RMOD	Operation mode switching	The operation mode can be switched when the MODE switch on the controller is set to AUTO. (AUTO when this signal is OFF, and to MANU when the signal is ON.)
13A		IN8	NC	—	Not used
14A		IN9	NC	_	Not used
15A		IN10	NC	_	Not used
16A		IN11	NC	—	Not used
17A		IN12 NC		_	Not used
18A		IN13	NC	—	Not used
19A		IN14	NC	—	Not used
20A		IN15	NC	—	Not used
1B		OUT0	PWR	System ready	This signal turns ON when the controller becomes ready after the main power has been turned on.
2B	_	OUT1	SV	Servo ON status	This signal turns ON when the servo is ON.
3B		OUT2	INP	Positioning complete	This signal turns ON when the amount of remaining travel pulses in the deviation counter falls within the in-position band.
4B		OUT3	HEND	Home return complete	This signal turns ON upon completion of home return.
5B		OUT4	TLR	Torque limited	This signal turns ON upon reaching the torque limit while the torque is limited.
6B		OUT5	*ALM	Controller alarm status	This signal turns ON when the controller is normal, and turns OFF when an alarm generates.
7B		OUT6	*EMGS	Emergency stop status	This signal turns ON when the emergency stop of the controller is cancelled, and turns OFF when an emergency stop is actuated.
8B	Output	OUT7	RMDS	Operation mode status	The operation mode status is output. This signal turns ON when the controller is in the manual mode.
9B		OUT8	ALM1		
10B		OUT9	ALM2	Alarm code output signal	An alarm code is output when an alarm generates.
11B		0UT10	ALM4	, sam oode output signal	For details, refer to the operation manual.
12B		0UT11	ALM8		
13B		0UT12	*ALML	Minor failure alarm	This signal is output when a message-level alarm generates.
14B		0UT13	NC	—	Not used
15B		0UT14	ZONE1	Zone signal 1	This signal turns ON when the current position of the actuator falls within the
16B		0UT15	ZONE2	Zone signal 2	parameter-set range.
17B	Pulse input		NP	Differential pulse-train input (+)	Differential pulses are input from the host. Up to 200 kpps can be input.
18B			/NP	Differential pulse-train input (-)	
19B	0V		N	Power supply	I/O power supply 0 V
20B	OV		N	Power supply	I/O power supply 0 V

(Note) * indicates a negative logic signal. Negative logic signals are normally ON while the power is supplied, and turn OFF when the signal is output.

(Note) The number of encoder pulses is 800 with all RCP5 series models. For details, refer to the operation manual.

Field Network Specification: Explanation of Operation Modes

If the PCON-CA is controlled via a field network, you can select one of the following five modes to operate the actuator. Take note that the required data areas on the PLC side vary depending on the mode.

Mode Description

	Mode	Description
0	Remote I/O mode	In this mode, the actuator is operated by controlling the ON/OFF of bits via the network, just like with the PIO specification. The number of positioning points and functions vary with each of the operation patterns (PIO patterns) that can be set by the controller's parameter.
1	Position/simple direct numerical mode	The target position is specified by directly entering a value, while other operating conditions (speed, acceleration, etc.) are set by specifying the desired position number corresponding to the desired operating conditions already input to the position data table.
2	Half direct numerical mode	The actuator is operated by specifying the speed, acceleration/deceleration and push current, in addition to the target position, by directly entering values.
3	Full direct numerical mode	The actuator is operated by specifying the target position, speed, acceleration/deceleration, push current control value, etc., by directly entering values. The current position, current speed, command current, etc., can also be read.
4	Remote I/O mode 2	Same as the above remote I/O mode, plus the current position read function and command current read function.

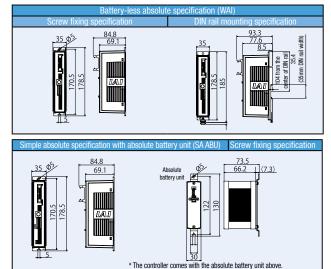
Required Data Size for Each Network

		DeviceNet	CC-Link	PROFIBUS-DP	CompoNet	MECHATROLINK I, II	EtherCAT	EtherNet/IP
0	Remote I/O mode	1CH	1 station	2 bytes	2 bytes	*	2 bytes	2 bytes
1	Position/simple direct numerical mode	4CH	1 station	8 bytes	8 bytes	*	8 bytes	8 bytes
2	Half direct numerical mode	8CH	2 stations	16 bytes	16 bytes	*	16 bytes	16 bytes
3	Full direct numerical mode	16CH	4 stations	32 bytes	32 bytes	*	32 bytes	32 bytes
4	Remote I/O mode 2	6CH	1 station	12 bytes	12 bytes	*	12 bytes	12 bytes

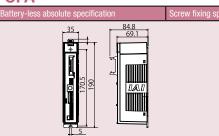
* No required data size is set for MECHATROLINK I and II.

■ List of Functions by Operation Mode

	Remote I/O mode	Position/simple direct numerical mode	Half direct numerical mode	Full direct numerical mode	Remote I/O mode 2
Number of positioning points	512 points	768 points	Unlimited	Unlimited	512 points
Operation by direct position data specification	×	0	0	0	×
Direct speed/acceleration specification	×	×	0	0	×
Push-motion operation	0	0	0	0	0
Current position read	×	0	0	0	0
Current speed read	×	×	0	0	×
Operation by position number specification	0	0	×	×	0
Completed position number read	0	0	×	×	0


* \bigcirc indicates that the operation is supported, and X indicates that it is not supported.

(Note 1) Take note that the MECHATROLINK specification does not support the full direct numerical mode.





External Dimensions



84.8 69.1

SA AF

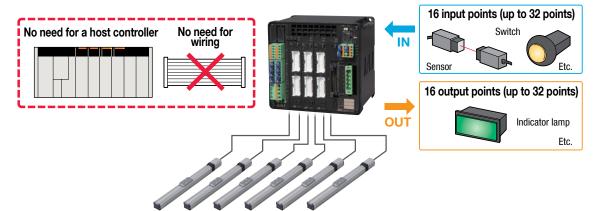
<u>93.3</u> 77.

46

Specification List

Item			Description						
		em		PCON-CA	PCON-CFA				
Number of controlled axes				1 axis					
Power-supply voltage				DC24V±10%	DC24V±10%				
Load current	RCP2		20P, 28P, 28SP	1 A max.					
(including	RCP2	Motor type	42P, 56P	2.2 A max.					
control-side	nora		60P, 86P		6 A max				
current	0004		28P, 35P,	High-output setting disabled: 2.2 A max.					
consumption)	RCP4 RCP5	Motor type	42P, 56P	High-output setting enabled: 3.5 A rated / 4.2 A max.					
(Note 1)	noro		60P, 86P		6 A max				
Electromagnetic t	orake power (for ac	tuator with brake)		DC24V ±10% 0.15A (max)	DC24V ±10% 0.5A (max)				
Rush current (Not	e 2)			8.3A	10A				
Momentary powe	r failure resistance			MAX.500µs					
Supported encode	er			Battery-less absolute encoder/incremental encoder					
Actuator cable ler	ngth			20m max.					
		PIO specification		Dedicated 24-VDC signal inputs/outputs (NPN/PNP selectable) Up to 1	6 input points, up to 16 output points, cable length up to 10m				
External interface		Field network spe	cification	DeviceNet, CC-Link, PROFIBUS-DP, CompoNet, MECHATROLINK-I/II, EtherCAT, EtherNet/IP					
Data setting, inpu	t method			PC software, touch panel teaching pendant, teaching pendant					
Data retention me	emory			Position data and parameters are saved in non-volatile memory. (There are no limits to how many times the memory can be rewritten.)					
Operation mode				Positioner mode/pulse-train control mode (selectable by parameter setting)					
Number of positio	ner-mode position	S		Up to 512 points for positioner type or up to 768 points for network type (Note) The total number of positioning points varies depending on which PIO pattern is selected.					
	-			Differential type (line-driver type): 200 kpps max., cable length up to 10m					
Pulse-train interfa	ice	Input pulses		Open-collector type: Not supported. * If the host uses open-collector outputs, use the separately sold AK-04 (optional) to change them to differential outputs.					
		Command pulse I	nagnification	1/50 < A/B < 50/1					
		(Electronic gear: A		Setting range of A and B (set by parameters): 1 to 4096					
		Feedback pulse o	utput	None					
Insulation resistar	nce			Not less than 10 MΩ at 500 VDC,					
Electric shock pro	tection mechanisn	1		Class I, basic insulation					
·		Incremental spec	ification	Screw fixing type: Not more than 250g / DIN rail fixing type: Not more than 285g	Screw fixing type: Not more than 270g / DIN rail fixing type: Not more than 305				
Mass (Note 3)		Simple absolute s (including 190 g f		Screw fixing type: Not more than 450g / DIN rail fixing type: Not more than 485g					
Cooling method				Natural cooling by air	Forced cooling by air				
		Ambient operating	g temperature	0 to 40°C					
		Ambient operating humidity		Not more than 85% RH (non-condensing)					
Faulizannant									
Environment		Operating ambier		Free from corrosive gases					

Note 2 Rush current flows for approx. 5 msec after the power is input (at 40°C). Exercise caution that the rush current value varies depending on the impedance of the power line. Note 3 30 g heavier for the field network specification.

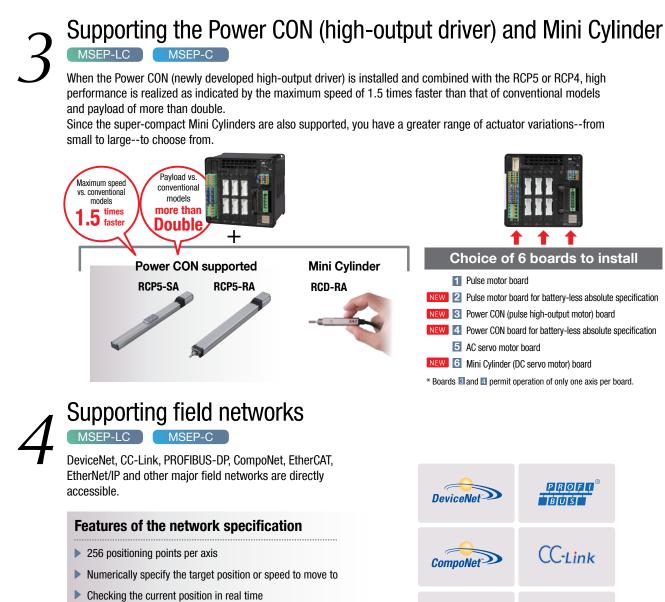


Added PLC function

MSEP-LC

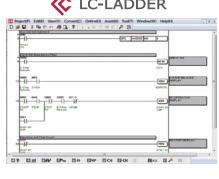
Operating the actuator and controlling the ON/OFF of I/O (input/output) signals using a ladder logic program is now possible. If your equipment is small enough, the MSEP-LC is all you need to control it. If your equipment is larger in size, you can still use the MSEP-LC to perform distributed control for each process to reduce the load of the main PLC. The MSEP-LC also makes your program simpler and troubleshooting easier.

Supporting actuators with the battery-less absolute encoder


Features of actuators with the battery-less absolute encoder

- 1 Home return is no longer necessary, so these actuators start and restart quicker than incremental actuators to begin working right away. They are also free from problems relating to home return, such as position shift.
- 2 Compared to standard absolute actuators, no battery is required, which results in the following benefits:
 - No need to purchase or replace batteries
 - No need to control the stocks and replacement timing of batteries
 No need to make adjustment (absolute reset) normally required
 - after battery replacement

ROBO Cylinder with the battery-less absolute encoder


 Substantially shorter communications time inside the controller (approx. one-tenth of conventional models)

Available Soon

Free ladder logic support software will be downloadable from our website

MSEP-LC

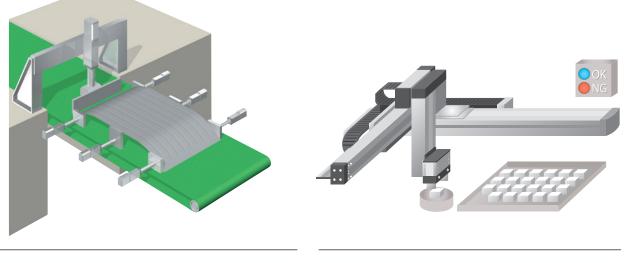
Ladder logic support software will be available for free download from our website. You can create a ladder program before purchasing any product.

EtherCAT.

(To be released in May 2014

EtherNet/IP>

Controller <MSEP-C/LC>__RCP5series


Application Examples

Rear panel positioning system

Shifted work parts are aligned by the "push motion" of the ROBO Cylinder as they enter the machining stage for automotive rear panels. One controller can handle multiple axes, so wiring is easy.

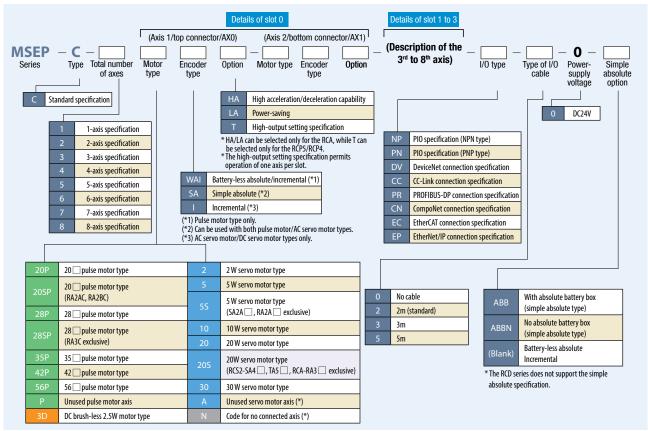
Palletizing system

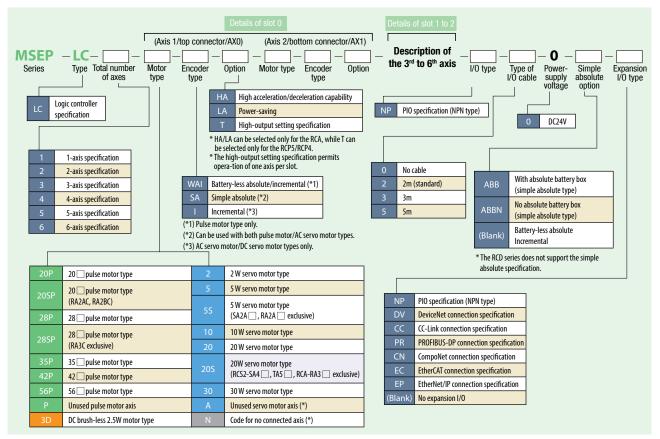
Should the system halt due to an emergency stop, etc., it can resume operation right away thanks to the battery-less absolute encoder.

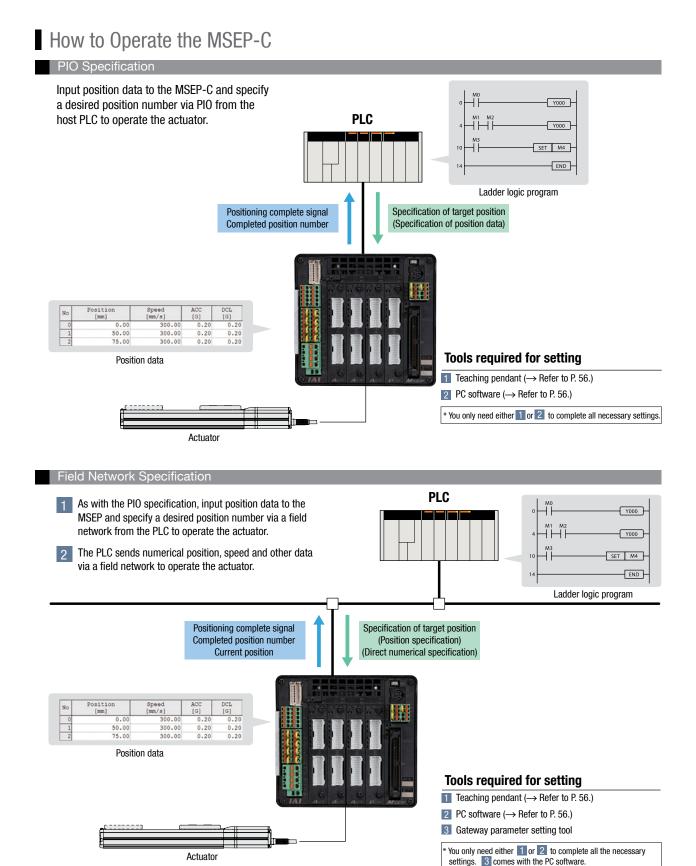


Transferring work parts between machining systems

Work parts can be transferred between systems without using a dedicated PLC.

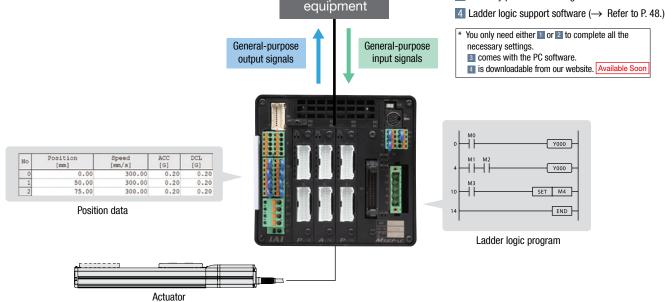

Positioning on an automotive manufacturing line


In the case of a large-scale line, implementing distributed control of each process and connecting to the host controller via a field network reduces the control load of the host controller.


MSEP Controller Models

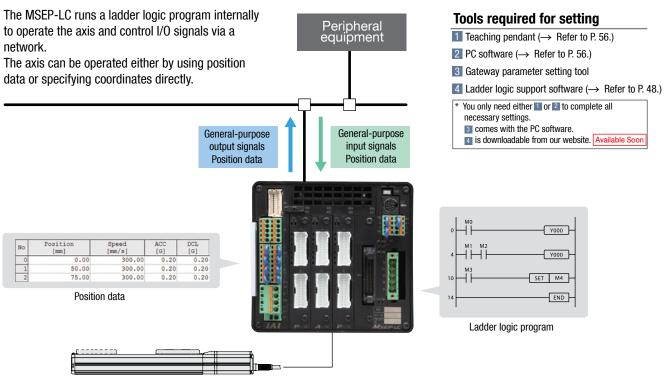
Controller <MSEP-C/LC>__RCP5series

PIO Specification


The MSEP-LC runs a ladder logic program internally to operate the axis and control the PIO I/O signals. The axis can be operated either by using position data or specifying coordinates directly.

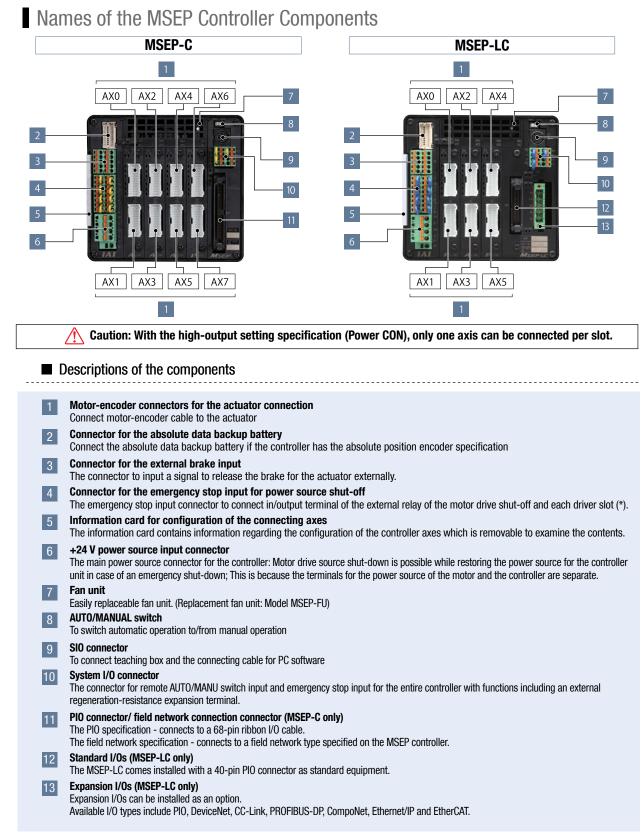
Tools required for setting

1 Teaching pendant (\rightarrow Refer to P. 56.)


2 PC software (\rightarrow Refer to P. 56.)

3 Gateway parameter setting tool

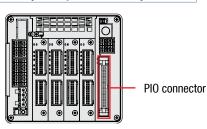
Peripheral

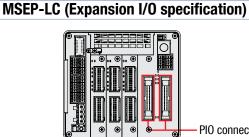

Field Network Specification

Actuator

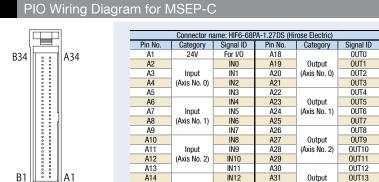
Controller <MSEP-C/LC>__RCP5series

(*1) The shut-off feature is available on a single slot basis which is for two axes per slot. Please note that a single axis basis cannot be accommodated.




Input/Output (PIO) Signals

The MSEP-C has dedicated inputs and outputs set to PIO signals at 34 input points/34 output points. The axis operates when each signal is turned ON/OFF from the host PLC.

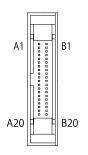

With the MSEP-LC, general-purpose input/output signals at 32 input points/32 output points can be used in a ladder logic program by using the standard 16 input points/16 output points plus expansion I/Os.

MSEP-C (PIO specification)

PIO connector

Input

(Axis No. 3)


Connector name: HIF6-68PA-1.27DS (Hirose Electric)										
Pin No.	Category	Signal ID	Pin No.	Category	Signal ID					
B1	24V	For I/O	B18		0UT16					
B2		IN16	B19	Output	0UT17					
B3	Input	IN17	B20	(Axis No. 4)	0UT18					
B4	(Axis No. 4)	IN18	B21		0UT19					
B5		IN19	B22		0UT20					
B6		IN20	B23	Output	0UT21					
B7	Input	IN21	B24	(Axis No. 5)	0UT22					
B8	(Axis No. 5)	IN22	B25		0UT23					
B9		IN23	B26		0UT24					
B10		IN24	B27	Output	0UT25					
B11	Input	IN25	B28	(Axis No. 6)	0UT26					
B12	(Axis No. 6)	IN26	B29		0UT27					
B13		IN27	B30		0UT28					
B14		IN28	B31	Output	0UT29					
B15	Input	IN29	B32	(Axis No. 7)	0UT30					
B16	(Axis No. 7)	IN30	B33		0UT31					
B17		IN31	B34	0V	For I/O					

PIO Wiring Diagram for MSEP-LC

A13 A14 A15

A16

A17

B1

Standard I/Os

Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory	
A1		+24-V	A11		X006	
A2		external input	A12		X007	
A3	-	Not used	A13		X008	
A4		Not used	A14		X009	
A5		X000	A15	Input	X00A	
A6		X001	A16	Input	X00B	
A7	Input	X002	A17		X00C	
A8	Input	X003	A18		X00D	
A9		X004	A19		X00E	
A10		X005	A20		X00F	

IN11

IN12

IN13

IN14

IN15

A30

A31

A32

A33

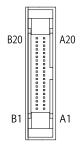
A34

0UT12

OUT13

0UT14

0UT15


For I/O

Output

(Axis No. 3)

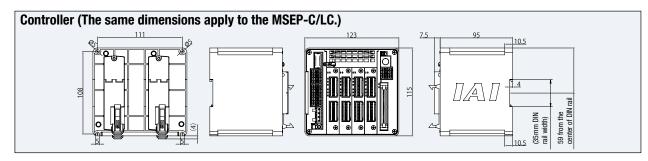
OV

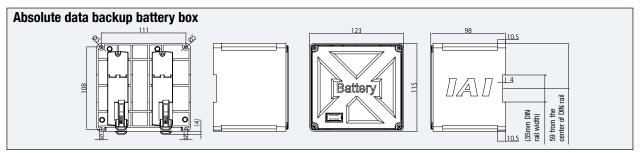
Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory
B1		Y000	B11		Y00A
B2		Y001	B12	1	YOOB
B3		Y002	B13	Quetrout	YOOC
B4		Y003	B14	Output	YOOD
B5	Output	Y004	B15		Y00E
B6	Output	Y005	B16	1	YOOF
B7]	Y006	B17		Not used
B8		Y007	B18	1	Not used
B9		Y008	B19	-	0 V external input
B10		Y009	B20	1	0 v external input

Expansion I/Os

Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory	
A1		+24-V	A11		X016	
A2		external input	A12		X017	
A3		Not used	A13	ĺ	X018	
A4		Not used	A14	1	X019	
A5		X010	A15	Input	X01A	
A6		X011	A16		X01B	
A7	Innut	X012	A17		X01C	
A8	Input	X013	A18	1	X01D	
A9		X014	A19	1	X01E	
A10		X015	A20	1	X01F	

Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory
B1		Y010	B11		Y01A
B2		Y011	B12	1	Y01B
B3		Y012	B13	Quetrout	Y01C
B4		Y013	B14	Output	Y01D
B5	0.44	Y014	B15		Y01E
B6	Output	Y015	B16	1	Y01F
B7		Y016	B17		Not used
B8		Y017	B18		Not used
B9		Y018	B19	-	0.V. outernel input
B10		Y019	B20		0 V external input




Table of General Specifications

Specifi	cation item	Description							
Number of axes in the co		8 axes MAX (MSEP-C), 6 axes MAX (MSEP-LC)							
Controller/ Motor input po	ower	DC24V ±10%							
Brake power		0.15 A x Number of axes							
Current consumption by o	control power	0.8A							
Controller inrush current	·	5A MAX, under 30 r	ns						
				Maxi	Maximum				
		Servo motor type	Rated ampere	Energy saver	Standard/ Hi-accel./decel.	Pulse motor type	Rated ampere	Maximum	
		2W	0.8A		4.6A	20P	1.0A	2.0A	
		3W(RCD)	0.7A		1.5A	28P	1.0A	2.0A	
Motor consumption curre	nt	5W	1.0A		6.4A	35P	2.2 A (high out-	2 2 A (high out-	
		10W(RCL)	1.01		6.4A	30P			
		10W(RCA/RCA2)	1.3A	2.5A	4.4A	400	put disabled) 3.5 A (high	put disabled) 4.2 A (high output	
		20W	1.3A	2.5A	4.4A	42P			
		20 W (20S type)	1.7A	3.4A	5.1A	56P	output		
		30W	1.3A	2.2A	4.4A	205	6P specification)	specification)	
Motor inrush current	Motor inrush current		Slot numbers x 10A MAX, under 5ms						
Motor-encoder cable leng	jth	Maximum length 20m (note) for absolute position							
Serial communication (SI	0 port: dedicated teaching)	RS485 1ch (Modbus protocol compatible) Speed 9.6 to 230.4kbps							
External interface	PIO specification	PIO specification : DC24 V dedicated signal in/output; Maximum input of 4 points/axis; Maximum output of 4 points/axis; Maximum cable length 10 m							
	Field network specification	DeviceNet, CC-Link, PROFIBUS-DP, MECHATROLINK, CompoNet, EtherCAT, EtherNet/IP(*)							
Data configuration and in	put method	PC software application, touch panel teaching pendant, gateway parameter configuration tool							
Data retention memory	•	Restore the position data and parameter in non-volatile memory (unlimited input)							
Positioning points		PIO specification: 2 or 3 points Field network specification: 256 points (no limited input for the simple numerical control and the direct numerical control) (Note) The number of designated positions vary depending on the parameter configuration with motion mode selection.							
LED display (On the front	panel)	LED for driver status, 8 LEDs (for each driver board) Status LED, 4 LEDs (PIO specification), 7 LEDs (Fieldbus specification)							
Electromagnetic brake fo	rce release	Enable to force-release by transmitting a deactivation signal to each axis (DC24 V input).							
Surge protection		Overcurrent protection (A cut-off semiconductor circuit is built-in on each slot)							
Electric shock protection	Electric shock protection		Class basic insulation						
Insulation resistance		DC500V 10MΩ							
Weight		620 g with the absolute position encoder specification plus 1950 g absolute data backup battery (8-axis specification)							
Cooling method	Cooling method		Forced- air cooling						
	Ambient operating temperature/humidity		0 to 40°C, under 85% RH (non-condensing)						
International Protection c		IP20							

Exterior Dimensions

(*) The EtherCAT specification will be available soon.

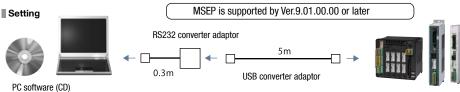
Options

Teaching pendant

Teaching device for positioning input, test operation, and monitoring. Summarv

Specification

Rated voltage	24V DC
Power consumption	3.6 W or less (150 mA or less)
Ambient operating temperature	0~50°
Ambient operating humidity	20 to 85%RH (non-condensing)
Environmental resistance	IP40 (initial state)
Weight	507 g (TB-01 unit only)


PC software (Windows only) * For the MSEP field network specification, the PC software is required. A startup support software for inputting positions, performing test runs, and monitoring. Summary With enhancements for adjustment functions, the startup time is shortened.

RCM-101-MW (External device communication cable + RS232 conversion unit) Model

USB converter adaptor

3m

USB cable

later / XP SP2 or later / Vista / 7

Supported Windows: 2000 SP4 or

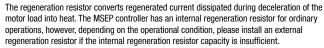
Summary A supplement or modification to the driver board is feasible with the MSEP controller. When the actuator that control motions needs to be modified, just replacing the driver board would serve the purpose without changing the entire controller. (The parameters need to be adjusted when changing the driver board)

	Motor type	High output type	Encoder type	Number of axes	Model	Standard price
		High output setting	Battery-less absolute/ incremental	1-axis	MSEP-PPD1-W	_
		g	Simple absolute	1-axis	MSEP-PPD1-A	—
	Pulse motor		Battery-less	1-axis	MSEP-PD1-W	_
		Cancellation of high output setting	absolute/ incremental	2-axis	MSEP-PD2-W	—
			Simple absolute	1-axis	MSEP-PD1-A	_
				2-axis	MSEP-PD2-A	—
		-	Incremental	1-axis	MSEP-AD1-I	_
	AC servo			2-axis	MSEP-AD2-I	—
	motor		Simple absolute	1-axis	MSEP-AD1-A	_
				2-axis	MSEP-AD2-A	—
	DC servo		In any sector	1-axis	MSEP-DD1-I	_
	motor	— Incremental	2-axis	MSEP-DD2-I	_	

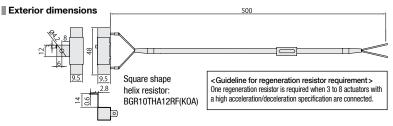
Replacement battery

Summary The replacement batterv for the absolute data backup battery box.

AB-7 Model


Replacement fan unit

MSEP-FU Model


Model RER-1

PC software (CD)

Summary

Model

Setting

Box for the absolute data backup battery

RCM-101-USB

External regeneration resistor

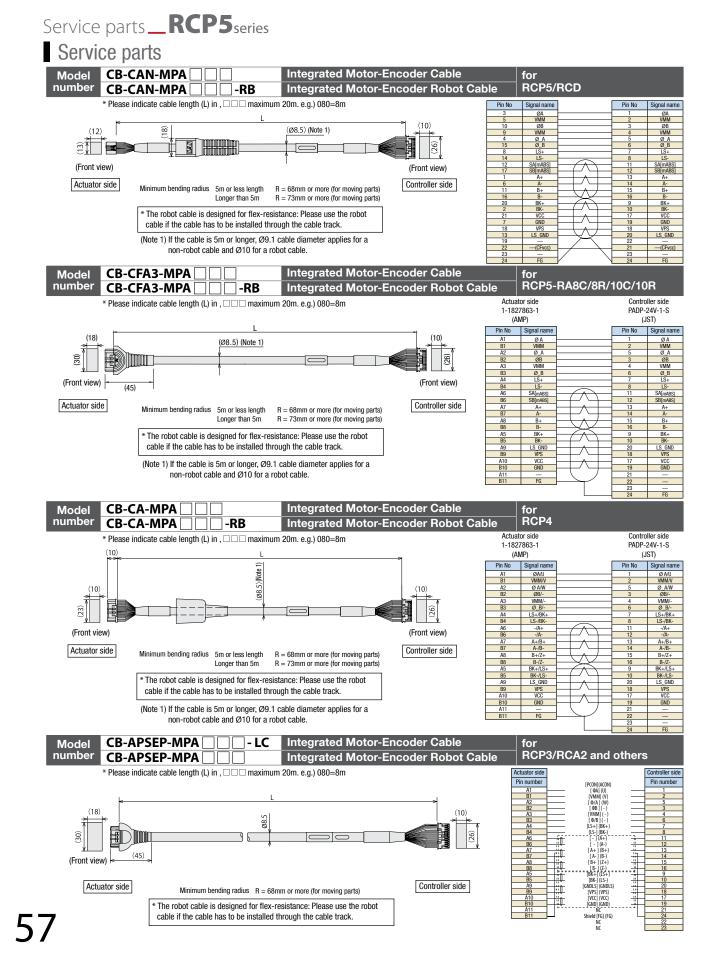
If the absolute position encoder specification is selected with code ABB, the absolute data Summary backup battery box is included with the controller. However, if the battery box is ordered as a separate unit, it does not include the battery but just the box itself. If the battery is needed, please purchase it separately. (Model: AB-7).

Model **MSEP-ABB** (Batteries not included)

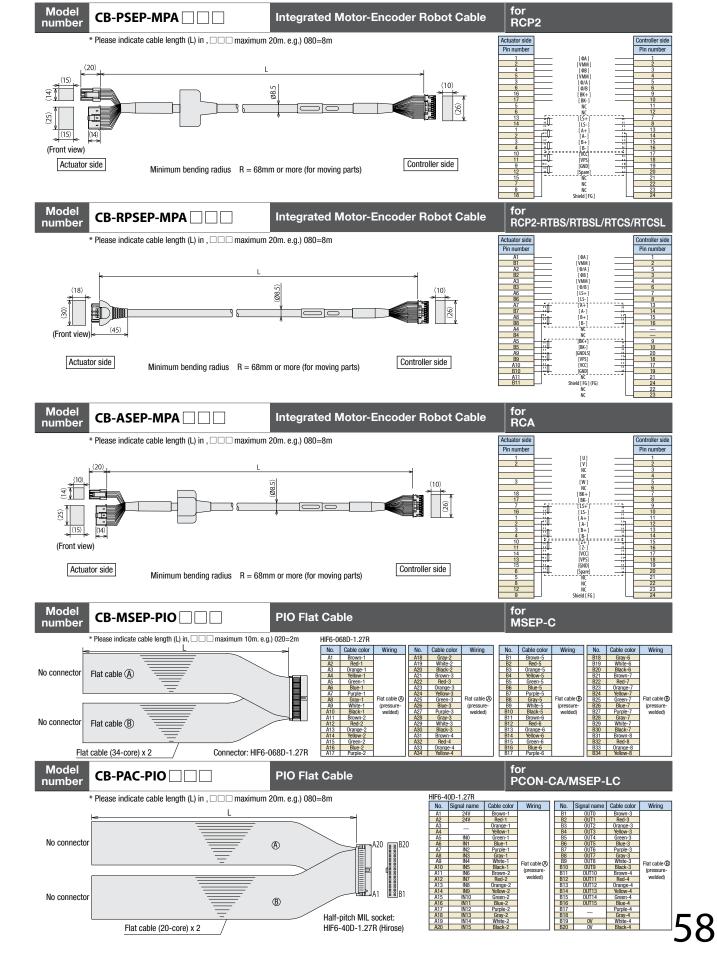
Exterior dimensions See P.55

* A cable (Model CB-MSEP-AB005) that connects the absolute data backup battery box to the MSEP is included with the box.

MSEP is supported by Ver.9.01.00.00 or later


5m USB converter adaptor

(External device communication cable + USB converter adaptor + USB cable)


Driver board

Madel (Oten dead and

	Model /	Standard	price			
	Motor type	High output type	Encoder type	Number of axes	Model	Standard p
	Pulse motor	High output setting	Battery-less absolute/ incremental	1-axis	MSEP-PPD1-W	_
		g	Simple absolute	1-axis	MSEP-PPD1-A	—
		Cancellation of high output setting	Battery-less absolute/ incremental	1-axis	MSEP-PD1-W	_
				2-axis	MSEP-PD2-W	_
			Simple absolute	1-axis	MSEP-PD1-A	_
				2-axis	MSEP-PD2-A	_
	AC servo		Incremental	1-axis	MSEP-AD1-I	_
			Incremental	2-axis	MSEP-AD2-I	_
		—		1-axis	MSEP-AD1-A	_

Sold & Serviced By: ELECTROMATE Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

Sold & Serviced By: ELECTROMATE Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com