

Cartesian Robot ICSB/ICSPB

The ICSA Series Cartesian Robots Have Been Totally Upgraded!

The ICSB/ICSPB Cartesian robots are pre-configured units based on the seven 2-axis configurations and seven 3-axis configurations that are frequently used. These robots are ready to be assembled and include the cabling and brackets so that they can be installed in your equipment and used immediately after delivery.

ICSB Series [Standard Specifications] / ICSPB Series [High-Precision Specifications]

Features

Gr

Great Improvements in Performance

Great improvements in precision, payload, acceleration and deceleration compared to the conventional ICSA series models.

Positioning repeatability

Standard Specifications

 ± 0.02 mm $\rightarrow \pm 0.01$ mm

High-Precision Specifications

 ± 0.01 mm $\rightarrow \pm 0.005$ mm

Payload

Cantilevered 3-axis Configuration Maximum payload

19kg

 \rightarrow 36.4kg

Acceleration and deceleration

Rated acceleration/deceleration

0.3G→**0.4G**

Maximum acceleration/deceleration

1.0G → **1.2G**

Note: Positioning repeatability conforms to the specification of each configured axis.

Many variations available

Seven types of configurations are provided for 2-axis and 3-axis units; a total of 834 types of variations including axis size and configuration direction can be selected.

2-axis configuration types 226

3-axis configuration types 608

Cable track option made available

A cable track for wiring of a customer provided device is an option that is available with the XYB/XYBG types.

For details, see page 14

No cable track overhang

No overhang from the main body caused by changes in the cable track mounting position; no need to worry about interference from peripheral devices.

Toll Free Phone (877) SERV098
Toll Free Fax (877) SERV099
www.electromate.com

Variations

2-axis Configurations

Y-axis base mount

XYB type (→ P. 17)

Y-axis slider mount

XYS type (→ P. 57)

Z-axis upright mount

XZ type (→ P. 71)

Z-axis slider mount

YZS type (→ P. 87)

Z-axis base mount

YZB type (→ P. 97)

Y-axis flat-mounted gantry

XYG type (→ P. 109)

Y-axis side-mounted gantry

XYBG type (→ P. 113)

3-axis Configurations

Y-axis base mount Z-axis base mount

XYB + Z base mount type (→ P. 135)

Y-axis base mount Z-axis slider mount

XYB + Z slider mount type (→ P. 189)

Z-axis upright mount Y-axis slider mount

XZ + Y slider mount type (→ P. 225)

Y-axis flat-mounted gantry Z-axis base mount

XYG + Z base mount type (→ P. 229)

Y-axis flat-mounted gantry Z-axis slider mount

XYG + Z slider mount type (→ P. 241)

Y-axis side-mounted gantry Z-axis base mount

XYBG + Z base mount type (→ P. 253)

Y-axis side-mounted gantry Z-axis slider mount

XYBG + Z slider mount type (→ P. 285)

2-axis Configuration Explanation of Types of Robots

A selection of configurations for seven frequently used types which include the cabling and brackets ready to be assembled.

The line up ranges from lightweight to heavyweight, short stroke to long stroke; the optimal type can be selected according to use for each configuration.

XYB (Y-axis Base Mount) Type

→ P. 17

A basic configuration type where the Y-axis base is mounted to the X-axis bracket. This actuator operates with a device or Z-axis attached to the Y-axis slider.

Point 1

The Y-axis configuration direction can be selected from one of four patterns (see the diagram at right).

Point 2

Select the Y-axis wiring specification from the two options of self-standing cable and cable track.

Configuration direction Configuration direction (range of operation) (range of operation) (range of operation) (range of operation) (range of operation)

2 XYS (Y-axis Slider Mount) Type

→ P. 57

The Y-axis slider is mounted to the X-axis bracket in a manner allowing the Y-axis to move. Use this type when the Y-axis itself must be moved back and forth to avoid an obstacle, etc.

Point 1

Y-axis configuration direction can be selected from one of four patterns (see the diagram at right).

Point 2

Only the self-standing cable option is available for the Y-axis wiring specification.

3 XZ (Z-axis Upright Mount) Type

→ P. 71

The Z-axis (vertical axis) is positioned vertically on the X-axis. Use this type in such applications as inserting loads into a stacker or moving a pallet up and down.

Point 1

The Z-axis configuration direction can be selected from one of six patterns (see the diagram at right).

Point 2

Since the Z-axis comes standard with a brake, the slider will not drop even when the power is turned off.

Point 3

The maximum stroke is 2500mm for the X-axis and 500mm for the Z-axis. (Consult IAI if you need a longer stroke.)

Configuration direction

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

The Y-axis is oriented horizontally on its side and its slider is connected to the slider of the Z-axis (vertical axis). Since the body of the Z-axis moves vertically, this type can be fitted with tooling or other devices on the Z-axis to transfer loads or perform other operations.

Point 1

Since the Z-axis comes standard with a brake, the slider will not drop even when the power is turned off.

Configuration direction

Point 2

A self-standing cable comes as standard for the Y-axis wiring specification, however, a cable track can also be accommodated (as a custom order).

YZB (Z-axis Base Mount) Type

→ P. 97

The Y-axis is horizontally oriented on its side and its slider is mounted to the slider of the Z-axis (vertical axis). Since the Z-axis moves vertically, this type can be fitted with tooling or other devices on the Z-axis to transfer loads or perform other operations.

Point 1

This type has a greater payload capacity than the YZS (Z-axis slider mount) type.

Point 2

Since the Z-axis comes standard with a brake, the slider will not drop even when the power is turned off

Configuration direction

Point 3

Select the Z-axis wiring specification from the two options of self-standing cable and cable track.

6 XYG (Y-axis Flat-mounted Gantry) Type

→ P. 109

The Y-axis of the XYB type is placed flat and a support guide is attached at the end of the Y-axis. Use this type for transferring heavy objects or when the Y-axis stroke is long and the end might sag.

Point 1

A maximum of 45 kg can be transferred.

Configuration direction

Point 2

The maximum stroke is 2500mm for the X-axis and 1200mm for the Y-axis. (Consult IAI if you need a longer stroke.)

7 XYBG (Y-axis Side-mounted Gantry) Type

→ P. 113

The Y-axis of the XYB type is placed sidemounted and a support guide is attached at the end of the Y-axis. Use this type for transferring heavy objects or when sagging at the end of the Y-axis would become a problem.

Point 1

A maximum of 60 kg can be transferred.

Point 2

A shorter stroke than the XYG type can be set for both the X-axis and Y-axis.

Configuration direction

3-axis Configuration **Explanation of Types of Robots**

Based on the 2-axis configuration XYB (XY base fixed) type and XYG/XYBG (XY gantry) type, this is a 3-axis configuration with an additional vertical Z-axis. An XZY type with an added Y-axis based on the XZ (Z-axis upright mount) type is also included in the line-up.

1 XYB (Y-axis Base Mount) + Z-axis Base Mount Type

→ P. 135

With this type, the base of the Z-axis is mounted to the Y-axis slider of the XYB type (The Y-axis base is mounted to the X-axis bracket).

Point

The main body of the Z-axis is mounted and the slider moves up and down. It has a greater load capacity vertically than the Z-axis slider mounted type.

Configuration direction

2 XYB (Y-axis Base Mount) + Z-axis Slider Mount Type

→ P. 189

With this type, the slider of the Z-axis is mounted to the Y-axis slider of the XYB type (The Y-axis base is mounted to the X-axis bracket).

Point

The main body of the Z-axis moves up and down, making it suitable when there are obstacles to the movement.

Configuration direction

3 XZ (Z-axis Upright Mount) + Y-axis Slider Mount Type

→ P. 225

This is a type where the slider of the Y-axis is mounted to the slider of the Z-axis of the XZ type (Z-axis is upright mounted on the X-axis).

Point

Suitable for insertion, movement of work parts to a stacker and moving of objects placed on the surface of a wall.

Configuration direction

With this type, the base of the Z-axis is mounted on the Y-axis slider of the XYG type (a guide is placed parallel to the X-axis and the Y-axis is supported by the X-axis and the guide).

Point

The main body of the Z-axis is mounted and the slider moves up and down. It has a greater load capacity vertically than the Z-axis slider mounted type.

Configuration direction

5 XYG (Y-axis Flat-mounted Gantry) + Z-axis Slider Mount Type

→ P. 241

With this type, the slider of the Z-axis is mounted on the slider of the Y-axis of the XYG type (a guide is placed parallel to the X-axis and the Y-axis is supported by the X-axis and the guide).

Point

The main body of the Z-axis moves up and down, making it suitable when there are obstacles to the movement.

Configuration direction

6 XYBG (Y-axis Side-mounted Gantry) + Z-axis Base Mount Type

→ P. 253

With this type, the base of the Z-axis is mounted on the slider of the Y-axis of the XYBG type (a support guide is attached at the end of the Y-axis of the XYB type).

Point

The main body of the Z-axis is mounted and the slider moves up and down. It has a greater load capacity vertically than Z-axis slider mounted type.

Configuration direction

7 XYBG (Y-axis Side-mounted Gantry) + Z-axis Slider Mount Type

→ P. 285

With this type, the slider of the Z-axis is mounted on the slider of the Y-axis of the XYBG type (a support guide is attached at the end of the Y-axis of the XYB type).

Point

The main body of the Z-axis moves up and down, making it suitable when there are obstacles to the movement.

Configuration direction

2-axis Configuration Model Selection Tables by Type

In the following Model Specification Tables by Type, please select the best suitable model by comparing the stroke, speed and payload.

Cartesian Robot XYB (Y-axis Base Mount) Type

	X-axis stroke					Pa	yload b	y Y-axis :	stroke (k	g)					Max. spee	ed (mm/s)		
Classification	(mm)	100 (mm)	150 (mm)	200 (mm)	250 (mm)	300 (mm)	350 (mm)	400 (mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)	X-axis	Y-axis	Model	Page
ВППП	100~900	6.1	5.8	5.5	5.3	5.0	4.7	4.5			-	-			960	960	ВА□Н	→ P. 17
[XY 2-axis configuration]	100~900	19.4	19.0	16.4	13.9	12.0	10.3	9.0			-	-			480	480	ВА□М	→ P. 19
Y-axis base mount		12.0	12.0	12.0	11.8	11.5	11.3	11.0			-	-			1200	960	вв□н	→ P. 21
	100~1100	20.0	20.0	20.0	20.0	20.0	20.0	20.0	18.6	16.6		-	-		1200	1200	вс□н	→ P. 25
1	100~1100	25.0	25.0	25.0	25.0	25.0	23.0	22.0			-	-			600	480	вв□м	→ P. 23
		30.0	30.0	29.5	29.2	26.7	23.5	20.9	18.6	16.6		-	-		600	600	BC□M	→ P. 27
		20.9	20.1	19.3	18.5	17.7	16.9	16.2	15.4	14.6	13.8	13.1	12.2	11.5	2400	2400	BG□S	→ P. 41
Control of the Contro		23.1	22.3	21.5	20.7	20.0	19.2	18.5	17.6	16.8	16.0	15.3	14.5	13.8	2400	2400	вк□н	→ P. 45
	100~1300	25.7	25.1	24.6	23.9	23.4	22.9	22.3	21.7	21.2	20.5	20.0	19.4	18.9	2400	1800	BE□S	→ P. 31
	100~1500	45.0	45.0	45.0	45.0	43.4	38.8	34.9	31.5	28.6	26.0	23.7	21.6	19.7	1200	1200	ВЕ□Н	→ P. 33
		60.0	60.0	55.6	48.8	43.4	38.8	34.9	31.5	28.6	26.0	23.7	21.6	19.7	600	600	BE□M	→ P. 35
		64.5	63.7	62.9	62.1	59.9	54.1	49.8	44.8	40.9	37.4	34.3	31.5	28.9	1200	1200	вк□м	→ P. 47
	100~1500	36.4	35.6	34.8	34.0	33.3	32.4	31.7	30.9	30.1	27.4	24.6	22.0	19.6	2500	2400	вм□н	→ P. 53
	100~1500	78.6	70.9	61.8	54.2	48.0	42.7	38.2	34.1	30.6	27.4	24.6	22.0	19.6	1250	1200	вм□м	→ P. 55
	800~2000	20.0	20.0	20.0	20.0	20.0	20.0	20.0	18.6	18.6		-	-		1200	1200	BD□H	→ P. 29
		20.9	20.1	19.3	18.5	17.7	16.9	16.2	15.4	14.6	13.8	13.1	12.2	11.5	2400	2400	BH□S	→ P. 43
	1000~2500	25.7	25.1	24.6	23.9	23.4	22.9	22.3	21.7	21.2	20.5	20.0	19.4	18.9	2400	1800	BF□S	→ P. 37
		45.0	45.0	45.0	45.0	43.4	38.8	34.9	31.5	28.6	26.0	23.7	21.6	19.7	1200	1200	BF□H	→ P. 39
	900~2500	36.6	35.8	35.0	34.2	33.5	32.7	32.0	31.1	30.3	29.5	28.8	28.0	27.3	2400	2400	BL□H	→ P. 49
	900~2500	65.0	65.0	65.0	65.0	62.3	55.9	50.7	46.1	42.0	38.4	35.2	32.2	29.6	1200	1200	BL□M	→ P. 51

Cartesian Robot XYS (Y-axis Slider Mount) Type

	X-axis stroke					Pa	yload b	y Y-axis s	stroke (k	g)					Max. spee	ed (mm/s)		
Classification	(mm)	100 (mm)	150 (mm)	200 (mm)	250 (mm)	300 (mm)	350 (mm)	400 (mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)	X-axis	Y-axis	Model	Page
S	100~600	6.6	6.3	6.1	5.8	5.5	4.9	3.9			-	-			960	960	SA□H	→ P. 57
XY 2-axis configuration]	100~600	19.9	15.1	10.8	8.1	6.3	4.9	3.9			-	-			480	480	SA□M	→ P. 59
Y-axis slider mount		10.0	9.4	8.7	8.2	7.7	7.2	6.7	6.2	5.6		-	-		1200	1200	S1C□H	→ P. 61
		22.6	21.8	21.0	20.2	19.5	18.7	16.9	13.8	11.3	9.2	7.4	-	-	2400	2400	SG□S	→ P. 67
	100~800	27.5	26.7	26.0	25.2	24.4	20.8	17.1	14.0	11.6	9.4	7.6		-	1200	1200	SG□H	→ P. 69
		30.0	29.0	27.4	21.0	16.6	13.4	10.9	8.9	7.3		-	-		600	600	S1C□M	→ P. 63
		31.7	31.1	27.1	20.7	16.4	13.2	10.7	8.7	7.0		-	-		1200	1200	S2C□H	→ P. 65

Cartesian Robot XZ (Z-axis Upright Mount) Type

	X-axis stroke					Pa	yload b	y Z-axis	stroke (k	g)					Max. spee	ed (mm/s)		_
Classification	(mm)	100 (mm)	150 (mm)	200 (mm)	250 (mm)	300 (mm)	350 (mm)	400 (mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)	X-axis	Z-axis	Model	Page
ZUUU	100~900	7.0	7.0	6.6	5.6	4.8				-	-				960	480	ZA□H	→ P. 71
XZ 2-axis configuration	100~900	9.2	7.8	6.7	5.7	4.8				-	-				480	240	ZA□M	→ P. 73
Z-axis upright mount		10.0	10.0	10.0	10.0	10.0	9.7	8.4			-	-			1200	600	Z1C□H	→ P. 75
a T	100~1100	18.3	16.0	14.1	12.3	10.7	9.3	8.0			-	-			1200	600	Z2C□H	→ P. 79
TA .		18.9	16.7	14.8	12.9	11.4	9.8	9.0				-			600	300	Z1C□M	→ P. 77
15	100~1300	20.0	19.7	17.4	15.2	13.3	11.4	9.8	8.2	6.7		-	-		2400	1200	ZG□S	→ P. 83
	800~2000	18.3	16.0	14.1	12.3	10.7	9.3	8.0			-	-			1200	600	ZD□H	→ P. 81
	1000~2500	20.0	19.7	17.4	15.2	13.3	11.4	9.8	8.2	6.7		-	-		2400	1200	ZH□S	→ P. 85

Cartesian Robot YZS (Z-axis Slider Mount) Type

	Y-axis stroke					Pa	yload b	y Z-axis	stroke (k	g)					Max. spee	ed (mm/s)		
Classification	(mm)	100 (mm)	150 (mm)	200 (mm)	250 (mm)	300 (mm)	350 (mm)	400 (mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)	Y-axis	Z-axis	Model	Page
YS□□□	100~500	3.9	3.5	3.2	2.8	2.5	2.2	1.9			-	-			960	480	YSA□H	→ P. 87
YZ 2-axis configuration Z-axis slider mount	100~300	11.0	10.6	10.3	9.9	9.6	8.9	8.6			-	-			480	240	YSA□M	→ P. 89
J=1		13.3	12.8	12.2	11.6	11.1	10.4	9.9	9.4	8.8		-	-		600	300	YSC□M	→ P. 93
	100~700	13.6	12.9	12.4	11.7	11.1	10.5	10.0	9.3	8.7			-		1200	600	YSC□H	→ P. 91
		28.8	28.0	27.2	26.4	25.7	24.8	24.1	23.3	22.5			-		1200	600	YSG□H	→ P. 95

Cartesian Robot YZB (Z-axis Base Mount) Type

	Y-axis stroke					Pa	yload b	y Z-axis	stroke (k	.g)					Max. spee	ed (mm/s)		
Classification	(mm)	100 (mm)	150 (mm)	200 (mm)	250 (mm)	300 (mm)	350 (mm)	400 (mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)	Y-axis	Z-axis	Model	Page
YB□□□	100~900	7.0	7.0	6.7	6.3	6.1	5.7	5.4			-	-			960	480	YВА□Н	→ P. 97
YZ 2-axis configuration Z-axis base mount	100~900	14.0	14.0	14.0	14.0	14.0	14.0	14.0			-	-			480	240	YBA□M	→ P. 99
~	100~1100	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		-	-		1200	600	YBC□H	→ P. 101
	100~1100	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		-	-		600	300	YBC□M	→ P. 103
	100~1300	20.0	20.0	20.0	20.0	20.0	20.0	19.7	18.9	18.0			-		2400	1200	YBG□S	→ P. 105
MI	100~1300	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0			-		1200	600	YBG□H	→ P. 107

Cartesian Robot XYG (Y-axis Flat-mounted Gantry) Type

	X-axis stroke				Paylo	ad by Y-a	xis strol	ke (kg)				Max. spee	ed (mm/s)		_
Classification	(mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)	800 (mm)	900 (mm)	1000 (mm)	1100 (mm)	1200 (mm)	X-axis	Y-axis	Model	Page
G	1000~2500			45.0					-			1200	1200	G1J□H	→ P. 109
configuration Ý-axis flat-mounted gantry	1000~2300			-			45.0	43.6	38.3	33.7	29.6	1200	1200	G2J□H	→ P. 111

Cartesian Robot XYBG (Y-axis Side-mounted Gantry) Type

	X-axis stroke							Pay	load by	Y-axis	stroke	(kg)							Max. spee	ed (mm/s)		
Classification	(mm)	300 (mm)	350 (mm)	400 (mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)	750 (mm)	800 (mm)	850 (mm)	900 (mm)	950 (mm)	1000 (mm)	1050 (mm)	1100 (mm)	X-axis	Y-axis	Model	Page
GUUUU		12.9	12.5	12.3	11.9	11.6	11.2	10.9					-	-					1200	960	GB□H	→ P. 113
XY 2-axis configuration	100~1100			27	7.0			26.8					-	-					600	480	GB□M	→ P. 115
Y-axis side-mounted gantry	100~1100			23.0			21.8	19.5	17.5	15.7					-				1200	1200	GC□H	→ P. 117
		26.6	26.0	25.4	24.9	24.3	21.8	19.5	17.5	15.7					-				600	600	GC□M	→ P. 119
	100~1300		45	5.0		41.5	37.8	34.6	31.7	29.1	26.7	24.5	22.5	20.7		-	-		1200	1200	GE□H	→ P. 123
	100~1300	60.0	55.8	50.3	45.6	41.5	37.8	34.6	31.7	29.1	26.7	24.5	22.5	20.7		-	-		600	600	GE□M	→ P. 125
	100~1300		-	-		34.5	31.1	28.1	25.3	22.8	20.4	18.3	16.3	14.5	12.7	11.1	9.5	8.1	1200	1200	GG□H	→ P. 129
	100~1300		-	-		34.5	31.1	28.1	25.3	22.8	20.4	18.3	16.3	14.5	12.7	11.1	9.5	8.1	600	600	GG□M	→ P. 131
	800~2000			23.0			21.8	19.5	17.5	15.7					-				1200	1200	GD□H	→ P. 121
	1000~2500		45	5.0		41.5	37.8	34.6	31.7	29.1	26.7	24.5	22.5	20.7		-	-		1200	1200	GF□H	→ P. 127
	1000~2300		-	-		34.5	31.1	28.1	25.3	22.8	20.4	18.3	16.3	14.5	12.7	11.1	9.5	8.1	1200	1200	GH□H	→ P. 133

3-axis Configuration Model Selection Tables by Type

In the following Model Specification Tables by Type, please select the best suitable model by comparing the stroke, speed and payload.

Cartesian Robot XYB + Z-axis Base Mount Type

Classification	X-axis stroke	Y-axis stroke	Z-axis stroke	Payload	М	aximum speed (mm	/s)	Madal	Dago
Classification	(mm)	(mm)	(mm)	(kg)	X-axis	Y-axis	Z-axis	Model	Page
$B\Box\Box\Box B\Box\Box$				3.5			960	BA□MB1H	
XYB + Z-axis	100~900			7~3.6	480	480	480	BA□MB1M	→ P. 135
3-axis configuration				8.9~3.6			240	BA□MB1L	
Z-axis base mount		1		3.5			960	ВВ□НВ1Н	
elle.		100~400	100~300	7~6.2	1200	960	480	BB□HB1M	→ P. 137
				7.7~6.2			240	BB□HB1L	
				3.5			960	вв□мв1н	
				7.0	600	480	480	BB□MB1M	→ P. 139
				14.0			240	BB□MB1L	
				3.5			960	BC□HB1H	
				7.0	1200	1200	480	ВС□НВ1М	→ P. 141
				14~11			240	BC□HB1L	7
	100~1100			5.0			1200	BC□HB2H	
	100-1100			10~5.4	1200	1200	600	BC□HB2M	→ P. 143
				13.1~5.4	1200	1200	300	BC□HB2L	7 F. 143
				10~4.9	1200	1200	1200	BC□HB3H	→ P. 145
				12.6~4.9			600	BC□HB3M	
				5.0	40-		1200	BC□MB2H	
				10~5.4	600	600	600	BC□MB2M	→ P. 147
		100~500	100~400	19~5.4			300	BC□MB2L	
				10~4.9	600	600	1200	BC□MB3H	→ P. 149
				18.5~4.9			600	BC□MB3M	
				3.5			960	BD□HB1H	
				7.0	1200	1200	480	BD□HB1M	→ P. 151
				14~11			240	BD□HB1L	
	800~2000			5.0			1200	BD□HB2H	
	800~2000			10~5.4	1200	1200	600	BD□HB2M	→ P. 153
				13.1~5.4			300	BD□HB2L	
				10~4.9	1200	1200	1200	BD□HB3H	\ n -==
				12.6~4.9	1200	1200	600	BD□HB3M	→ P. 155
				3.5			960	ВЕ□НВ1Н	
				7.0	1200	1200	480	BE□HB1M	→ P. 157
				14.0			240	BE□HB1L	
				5.0			960	BE□HB2H	
	100~1300			10~7.2	1200	1200	480	BE□HB2M	→ P. 159
				20~7.2	1200	1200	240	BE□HB2L	71.135
				10~6.6			1200	ВЕ□НВЗН	
				20~6.6	1200	1200	600	BE□HB3M	→ P. 161
		1		3.5			960	BF□HB1H	
					1200	1200			→ D 162
				7.0	1200	1200	480	BF□HB1M	→ P. 163
				14.0			240	BF□HB1L	
	1000~2500			5	1200	1200	1200	BF□HB2H	\ D.4.5
				10~7.2	1200	1200	600	BF□HB2M	→ P. 165
		100~700	100~500	20~7.2			300	BF□HB2L	
				10~6.6	1200	1200	1200	BF□HB3H	→ P. 167
		-		20~6.6			600	BF□HB3M	
				10.0	2400	2400	1200	BK□HB3H	→ P. 169
				20~13.6			600	ВК□НВЗМ	
	100~1300			20~8.6	2400	2400	1200	ВК□НВ4Н	→ P. 171
				20~17.5	1200	1200	600	ВК□МВЗМ	→ P. 173
]		36.4~11.6	1200	1200	600	ВК□МВ4М	→ P. 175
				10.0	2400	2400	1200	BL□HB3H	→ P. 177
				20.~13.6	2400	2400	600	BL□HB3M	71:177
	900~2500			20~8.6	2400	2400	1200	BL□HB4H	→ P. 179
				20~17.5	1200	1200	600	В∟□МВЗМ	→ P. 181
				36.4~11.6	1200	1200	600	BL□MB4M	→ P. 183
		1		20~6.0	2500	2400	1200	вм□нв4н	→ P. 185
	100~1500			33.1~6.0	1250	1200	600	ВМ□МВ4М	→ P. 187
			1						Sold & Serviced By:

Cartesian Robot XYB + Z-axis Slider Mount Type

Cl. 'C. ':	X-axis stroke	Y-axis stroke	Z-axis stroke	Payload	М	aximum speed (mm	/s)		
Classification	(mm)	(mm)	(mm)	(kg)	X-axis	Y-axis	Z-axis	Model	Page
B□□S□□	100 000			4.3~2.8	400	400	480	BA□MS1M) D 100
XYB + Z-axis	100~900			11.3~4.0	480	480	240	BA□MS1L	→ P. 189
3-axis configuration Z-axis slider mount		100 400	100 200	4.3~2.8	1200	0.00	480	BB□HS1M) D 101
2 axis shaci moant		100~400	100~300	8.1~6.6	1200	960	240	BB□HS1L	→ P. 191
\cap				4.3~2.8	600	400	480	BB□MS1M) D 102
Jan 1	100~1000			11.3~9.8	600	480	240	BB□MS1L	→ P. 193
	100~1000			4.3~2.1	1200	1200	480	BC□HS1M) D 105
				11.3~9.1	1200	1200	240	BC□HS1L	→ P. 195
				13.2~5.5	1200	1200	600	BC□HS3M	→ P. 197
		100~500		14.3~5.5	600	600	600	BC□MS3M	→ P. 199
				4.3~2.1	1200	1200	480	BD□HS1M) D 201
	800~2000			11.3~9.1	1200	1200	240	BD□HS1L	→ P. 201
			100~400	13.2~5.5	1200	1200	600	BD□HS3M	→ P. 203
				4.3~2.1	1200	1200	480	BE□HS1M	\ D 205
	100~1000			11.3~9.1	1200	1200	240	BE□HS1L	→ P. 205
				14.3~8.5	1200	1200	600	BE□HS3M	→ P. 207
				4.3~2.1	1200	1200	480	BF□HS1M	→ P. 209
	1000~2500			11.3~9.1	1200	1200	240	BF□HS1L	7 P. 209
				14.3~8.5	1200	1200	600	BF□HS3M	→ P. 211
				12~5.0	2400	2400	1200	BK□HS4H	\ D 212
	100~1000	100~700		25.1~9.0	2400	2400	600	BK□HS4M	→ P. 213
	100~1000	100~700		12~5.0	1200	1200	1200	BK□MS4H	\ D 215
				32~12.1	1200	1200	600	BK□MS4M	→ P. 215
			100 500	12~5.0	2400	2400	1200	BL□HS4H	\ D 217
	000 3500		100~500	25.1~9.0	2400	2400	600	BL□HS4M	→ P. 217
	900~2500			12~5.0	1200	1200	1200	BL□MS4H	→ P. 219
				32~12.1	1200	1200	600	BL□MS4M	7 K. 219
	100~1000			12~5.0	2500	2400	1200	BM□HS4H	→ P. 221
	100~1000			32~6.5	1250	1200	600	BM□MS4M	→ P. 223

Cartesian Robot XZ + Y-axis Slider Mount Type

	Classification	X-axis stroke	Y-axis stroke	Z-axis stroke	Payload	Ma	aximum speed (mm	/s)	Model	Page
	Classification	(mm)	(mm)	(mm)	(kg)	X-axis	Y-axis	Z-axis	Model	rage
[X	Z + Y-axis axis configuration axis slider mount	120~1070	100~400	100~400	13~8.7	1200	600	960	Z3C□HS1H	→ P. 225
		120~1270	100~500	100~500	21.2~7.0	1200	600	1200	Z3G□HS2H	→ P. 227

Cartesian Robot XYG + Z-axis Base Mount Type

Classification	X-axis stroke	Y-axis stroke	Z-axis stroke	Payload	M	aximum speed (mm	/s)	Mandal	D
Classification	(mm)	(mm)	(mm)	(kg)	X-axis	Y-axis	Z-axis	Model	Page
G□□HB□□				3.5			960	G1J□HB1H	
XYG + Z-axis				7.0	1200	1200	480	G1J□HB1M	→ P. 229
3-axis configuration Z-axis base mount				14.0			240	G1J□HB1L	
		500~700	100~600	5.0			1200	G1J□HB2H	
Ne		300~700	100~600	10.0	1200	1200	600	G1J□HB2M	→ P. 231
				20~18.0			300	G1J□HB2L	
				10.0	1200	1200	1200	G1J□HB3H	→ P. 233
	1000~2500			20~18.0	1200	1200	600	G1J□HB3M	7 P. 233
	1000~2500			3.5			960	G2J□HB1H	
				7.0	1200	1200	480	G2J□HB1M	→ P. 235
				14.0			240	G2J□HB1L	
		800~1200	100~600	5.0			1200	G2J□HB2H	
		800~1200	100~600	10.0	1200	1200	600	G2J□HB2M	→ P. 237
				20~15.1			300	G2J□HB2L	
				10.0	1200	1200	1200	G2J□HB3H	→ D 220
				20~14.5	1200	1200	600	G2J□HB3M	→ P. 239

Cartesian Robot XYG + Z-axis Slider Mount Type

Classification	X-axis stroke	Y-axis stroke	Z-axis stroke	Payload	M	aximum speed (mm	/s)	Model	Danie
Classification	(mm)	(mm)	(mm)	(kg)	X-axis	Y-axis	Z-axis	Model	Page
G□□HS□□			100~400	4.3~2.1	1200	1200	480	G1J□HS1M	→ P. 241
XYG + Z-axis		500~700	100~400	11.3~9.1	1200	1200	240	G1J□HS1L	7 F. 241
3-axis configuration Z-axis slider mount		300~700	100~500	14.8~9.8	1200	1200	300	G1J□HS2L	→ P. 243
0	1000~2500		100~300	14.3~9.2	1200	1200	600	G1J□HS3M	→ P. 245
	1000~2300		100~400	4.3~2.1	1200	1200	480	G2J□HS1M	→ P. 247
		800~1200	100~400	11.3~9.1	1200	1200	240	G2J□HS1L	7 P. 24/
		800~1200	100~500	14.8~9.8	1200	1200	300	G2J□HS2L	→ P. 249
			100~500	14.3~9.2	1200	1200	600	G2J□HS3M	→ P. 251

Cartesian Robot XYBG + Z-axis Base Mount Type

61 10 11	X-axis stroke	Y-axis stroke	Z-axis stroke	Payload	М	aximum speed (mm	/s)		
Classification	(mm)	(mm)	(mm)	(kg)	X-axis	Y-axis	Z-axis	Model	Page
$G\square\square\square B\square\square$			100 300	7~3.6	1200	960	480	GB□HB1M	\ D 252
XYBG + Z-axis		300~600		7.6~4.5	1200	960	240	GB□HB1L	→ P. 253
3-axis configuration Z-axis base mount		300~600	100~300	7.0	600	400	480	GB□MB1M	→ P. 255
				14.0		480	240	GB□MB1L	7 P. 255
				7.0	1200	1200	480	GC□HB1M	→ P. 257
	100~1100			14~13.6	1200	1200	240	GC□HB1L	7 P. 25/
				10~8.0	1200	1200	600	GC□HB2M	→ P. 259
				13~8.0	1200	1200	300	GC□HB2L	7 F. 239
		300~700		10~7.5	1200	1200	1200	GC□HB3H	→ P. 261
			100~400	17.6~8	600	600	300	GC□MB2L	→ P. 263
			100~400	17.1~7.5	600	600	600	GC□MB3M	→ P. 265
				7.0	1200	1200	480	GD□HB1M	→ P. 267
				14~13.6	1200		240	GD□HB1L	
	800~2000			10~8.0	1200	1200	600	GD□HB2M	→ P. 269
				13~8.0		1200	300	GD□HB2L	7 F. 209
				10~7.5	1200	1200	1200	GD□HB3H	→ P. 271
				14.0	1200	1200	240	GE□HB1L	→ P. 273
				10.0	1200	1200	600	GE□HB2M	→ P. 275
	100~1300			20~11.8	1200		300	GE□HB2L	
	1001500			10.0			1200	GE□HB3H	
				20~11.2	1200	1200	600	GE□HB3M	→ P. 277
		300~900	100~500	31.8~11.2			300	GE□HB3L	
		300~300	100~300	14.0	1200	1200	240	GF□HB1L	→ P. 279
				10	1200	1200	600	GF□HB2M	→ P. 281
	1000~2500			20~11.8	1200	1200	300	GF□HB2L	71.201
	1000-2500			10.0			1200	GF□HB3H	
				20~11.2	1200	1200	600	GF□HB3M	→ P. 283
				31.8~11.2			300	GF□HB3L	

Cartesian Robot XYBG + Z-axis Slider Mount Type

Cl. 'C .'	X-axis stroke	Y-axis stroke	Z-axis stroke	Payload	M	aximum speed (mm	/s)	Model	
Classification	(mm)	(mm)	(mm)	(kg)	X-axis	Y-axis	Z-axis	Model	Page
G□□□S□□				4.3~2.8	1200	060	480	GB□HS1M	→ P. 285
XYBG + Z-axis		300 600	100 300	8~4.8	1200	960	240	GB□HS1L	7 F. 285
3-axis configuration Z-axis slider mount		300~600	100~300	4.3~2.8	600	480	480	GB□MS1M	\ D 207
				11.3~9.8	600	460	240	GB□MS1L	→ P. 287
\circ	100~1000			4.3~2.1	1200	1200	480	GC□HS1M	→ P. 289
J _e	100~1000			11.3~9.1	1200	1200	240	GC□HS1L	7 P. 289
"iil				13.1.~8.1	1200	1200	600	GC□HS3M	→ P. 291
		300~700	100~400	4.3~2.1	600	600	480	GC□MS1M	→ P. 293
				11.3~9.1	600		240	GC□MS1L	
				14.3~8.1	600	600	600	GC□MS3M	→ P. 295
	800~2000			4.3~2.1	1200	1200	480	GD□HS1M	→ P. 297
				11.3~9.1	1200		240	GD□HS1L	
				13.1~8.1	1200	1200	600	GD□HS3M	→ P. 299
				4.3~2.1	1200	1200	480	GE□HS1M	→ P. 301
			100~400	11.3~9.1	1200	240	GE□HS1L	7 P. 301	
	100~1000			14.3~10.5	1200	1200	600	GE□HS3M	\ D 202
				32.9~13.1		1200	300	GE□HS3L	→ P. 303
				4.3~2.1		600	480	GE□MS1M	→ P. 305
		300~900		11.3~9.1	600	600	240	GE□MS1L	
				34.3~13.1	600	600	300	GE□MS3L	→ P. 307
				4.3~2.1	1200	1200	480	GF□HS1M	→ D 200
	1000~2500			11.3~9.1	1200	1200	240	GF□HS1L	→ P. 309
				14.3~10.5	1200	1200	600	GF□HS3M	→ D 211
				32.9~13.1	1200	1200	300	GF□HS3L	→ P. 311

Cartesian Robot Cable Wiring

Methods of Wiring and Characteristics

The following two methods can be selected for the wiring cable for the motor/encoder for the second and third axes of Cartesian robots. Please select the type which is suitable for the particular use.

Self-standing cable model: SC

- The radius of flexure is large so that it does not readily disconnect.
- Space is required in the height direction.
- Provides user wiring and tubing inside the composite cable.

Cable track model: CT□

- Height is kept low and does not require space.
- Wiring for devices mounted on the Y-axis and Z-axis can be contained inside the cable track.

■Diagram of the Self-standing Cable Wiring

Wiring Details by Type of Configuration

Cartesian robot configured axis cable exit direction and installation direction of sensor differs depending on the type of configuration and the configuration direction. See the following tables for details.

Cable exit direction of the first axis can be changed as an option. (YZS/YZB are excluded)

Explanation of Symbols in the Tables

- A1E Actuator cable exit direction from the rear left
 A3E Actuator cable exit direction from the rear right
 A1S Actuator cable exit direction from the left side
- A3S Actuator cable exit direction from the right side
- C/L Creep sensor/limit switch mounting direction on the right side of the main body (standard)
 CL/LL Creep sensor/limit switch mounting direction on the left side of the main
 - body (symmetrically opposite)
- NC No motor/encoder cable wiring SC Self-standing cable
- CT Cable track

■Cable exit direction

■2-axis Configuration

T	Configuration	First	axis	Secon	ıd axis	Wiring on			
Туре	direction	Cable exit direction	Limit switch	Cable exit direction	Limit switch	second axis			
	1	A3S	CL/LL	A1S	C/L	NC			
	2	A1S	C/L	A3S	CL/LL	SC NC			
	3	A3S	CL/LL	A3S	CL/LL	CT			
	4	A1S	C/L	A1S	C/L	CI			
	1	A3S	CL/LL	A3S	C/L	NC/SC			
	2	A1S	C/L	A1S	CL/LL				
	3	A3S	CL/LL	A1S	CL/LL				
	4	A1S	C/L	A3S	C/L				
	1	A3S	CL/LL	A3S	CL/LL	NC/CT			
	2	A1S	C/L	A1S	C/L				
	3	A3S	CL/LL	A1S	C/L				
	4	A1S	C/L	A3S	CL/LL				
	5	A3S	CL/LL	A1S	C/L				
	6	A1S	C/L	A3S	CL/LL				
	1	A1E	C/L	A3E	CL/LL	NC/SC			
12	2	A3E	CL/LL	A1E	C/L	NC/3C			
	1	A1E	C/L	A3S	CL/LL	NC/CT			
	'	AIL	C/L	A1E	C/L	SC			
	2	A3E	CL/LL	A1S	C/L	NC/CT			
		AJE	CL/LL	A3E	CL/LL	SC			
	1	A3S	CL/LL	A3E	C/L	NC/CT			
XIG	2	A1S	C/L	A1E	CL/LL	INC/C1			

■Limit Switch Position

■3-axis Configuration

Tuna	Configuration	First	axis	Secon	ıd axis	Third	axis	Wiring for
Туре	direction	Cable exit direction	Limit switch	Cable exit direction	Limit switch	Cable exit direction	Limit switch	second axis
	1	A3S	CL/LL	A1S	C/L	A3S	CL/LL	NC/CT
	'	A35	CL/LL	AIS	C/L	A3E	CL/LL	SC
	2	A1S	C/L	A3S	CL/LL	A1S	C/L	NC/CT
		AIS	C/L	ASS	CL/LL	A1E	C/L	SC
Z-axis base mount	3	A3S	CL/LL	A3S	CL/LL	A1S	C/L	NC/CT
	,	733	CL/LL	733	CL/LL	A1E	C/L	SC
	4	A1S	C/L	A1S	C/L	A3S	CL/LL	NC/CT
	,	· ·			-	A3E		SC
	1	A3S	CL/LL	A1S	C/L	A1E	C/L	
	2	A1S	C/L	A3S	CL/LL	A3E	CL/LL	NC/SC
Z-axis slider mount	3	A3S	CL/LL	A3S	CL/LL	A3E	CL/LL	NC/3C
2 dxis silder modrit	4	A1S	C/L	A1S	C/L	A1E	C/L	
XZ + Y-axis slider mount	1	A3S	CL/LL	A3E	CL/LL	A3S	C/L	NC/SC
AZ 1 Tuxis silder mount	2	A1S	C/L	A1E	C/L	A1S	CL/LL	110/30
XYG + Z-axis base mount	1	A3S	CL/LL	A3E	C/L	A1S	C/L	NC/CT
ATG T Z BAIS BUSC MOUNT	2	A1S	C/L	A1E	CL/LL	A3S	CL/LL	
XYG + Z-axis slider mount	1	A3S	CL/LL	A3E	C/L	A3E	CL/LL	NC/SC
ATG TE GAIS SHOCK MISGIN	2	A1S	C/L	A1E	CL/LL	A1E	C/L	
	1	A3S	CL/LL	A1S	C/L	A3S	CL/LL	NC/CT
	·	7133	CL/LL	71.15	6,2	A3E	CDIE	SC
	2	A1S	C/L	A3S	CL/LL	A1S	C/L	NC/CT
		71.5		7133	CE/EE	A1E		SC
Z-axis base mount	3	A3S	CL/LL	A3S	CL/LL	A1S	C/L	NC/CT
		7133	CL/LL	7133	CL/ LL	A1E	6,2	SC
	4	A1S	C/L	A1S	C/L	A3S	CL/LL	NC/CT
						A3E		SC
	1	A3S	CL/LL	A1S	C/L	A1E	C/L	
	2	A1S	C/L	A3S	CL/LL	A3E	CL/LL	NC/SC
Z-axis slider mount	3	A3S	CL/LL	A3S	CL/LL	A3E	CL/LL	1
	4	A1S	C/L	A1S	C/L	A1E	C/L	

Cartesian Robot Cable Wiring

Cables between the Cartesian Robot and the Controller

Connect each axis of the Cartesian robot using motor and encoder single axis robot cables to the controller.

Details of Wiring by Type of Configuration

Cable track option for wiring of the customer provided device is available for the Y-axis slider of the XYB, XYBG, and XYG types.

Model Specification Items

The ICSB2, ICSPB2, ICSB3 and ICSPB3 models are made up of the following items. The selected range for each item (stroke, cable wiring and the like) differs depending on each model. For details, please refer to each model specification page starts from page 017.

① Series

Series names are as follows.

ICSB2 : ISB 2-axis configuration

ICSPB2 : ISPB 2-axis configuration

ICSB3 : ISB 3-axis configuration

ICSPB3 : ISPB 3-axis configuration

② Type

Indicates the configuration patterns, configuration directions, types of model configurations and types of speeds.

2-axis	В	<u>B</u>	1	<u>H</u>	3-axis	<u>B</u>	_B	1	<u>H_</u>	<u>B</u>	1	M
configuration	(1)	(2)	(3)	(4)	configuration	(1)	(2)	(3)	(4)	(5)	(6)	(7)

 $(1) \ 1 - 2 - axis configuration \ type \ (*1) \\ B: \ XYB \ type \ / \ S: \ XYS \ type \ / \ Z: \ XZ \ type \ / \ YS: \ YZS \ type \ / \ YB: \ YZB \ type \ / \ G: \ XYG \ type \ / \ YB: \ YZB \ type \ / \ YB: \ YB:$

(2) 1 - 2-axis configuration type A/B/C/1C/2C/D/E/F/G/H/K/L/M/1J/2J

(3) 1 - 2-axis configuration direction 1/2/3/4

(4) 1 - 2-axis speed type S: super-high speed type / H: high-speed type / M: medium speed type

(5) Z-axis mount type B: base mount / S: slider mount (6) Z-axis motor output 1: 60W / 2: 100W / 3: 200W / 4: 400W

(7) Z-axis speed type H: high-speed type / M: medium-speed type / L: low-speed type

(*1) For 3 axes, B (XYB type) and G (XYG type) and Z (XZ type) only

③ Encoder type

Indicates whether the encoder installed in the actuator is an "absolute type" or "incremental type."

A: Absolute type
Since the current slider position will be retained after the power is turned off, homing is not required when the actuator is powered up.
Since the slider position data are cleared when the power is turned off, homing must be performed every time the actuator is powered up.

First axis detail

Indicate the stroke and options of the first axis in the 2-axis and 3-axis configurations. The stroke should be entered in cm units (example: 500 mm stroke \rightarrow 50). When multiple options are set, entry should be made in alphabetical order with no hyphens in between. (Example: AQ seal + creep sensor + limit switch + non-motor end specification \rightarrow AQCLNM)

3) Second axis details

Indicate the stroke and options of the second axis in the 2-axis and 3-axis configurations.

The same holds for others.

Indicates the type of controller which is connected.

T1: XSEL-J/K

T2: XSEL-P/Q/R/S, SSEL, SCON

© Cable wiring between axes 1-2

Indicates the method of cable wiring from the first axis to the second axis.

SC: Self-standing cable specification

CT: Cable track specification

* Depending on the model, sometimes only either SC or CT can be specified. Please refer to each model specification page for details.

6 Third axis details

Indicate the stroke and options of the third axis in the 3-axis configuration. The same holds for others.

© Cable length

Indicates the length of the motor/encoder cable connecting the actuator and the controller.

As standard lengths, 3L (3m) or 5L (5m) can be selected.

Or custom length can be specified up to 20m.

① Cable wiring between axes 2-3

Indicates the method of cable wiring from the second axis to the third axis.

 $SC: Self\mbox{-}standing\ cable\ specification$

CT: Cable track specification

CTSC: Cable track + self-standing cable

- * As a general rule, the cable wiring between axes 2-3 is carried out using the same method as for wiring between axes 1-2.
- * CTSC is restricted to G1J \square HS $\square\square$, G2J \square HS $\square\square$.
- * Depending on the model, sometimes only either SC or CT can be specified. Please refer to each model specification page for details.

<Z3□□HS□H/G□□□B□□/G□□□S□□>

Z3C□HS1H	XZ (medium model + medium model) high-speed type + Y-axis (small model) slider mount	GB□HB1□	XYBG (medium model + small model) high-speed type + Z-axis (small model) base mount	GB□HS1□	XYBG (medium model + small model) high-speed type + Z-axis (small model) slider mount
Z3G□HS2H	XZ (large model + large model) high-speed type + Y-axis (medium model) slider mount	GB□MB1□	XYBG (medium model + small model) medium-speed type + Z-axis (small model) base mount	GB□MS1□	XYBG (medium model + small model) medium-speed type + Z axis(small model) slider mount
G1J□HB1□	XYG (large model + medium model) high-speed long type + Z-axis (small model) base mount	GC□HB1□	XYBG (medium model + medium model) high-speed type + Z-axis (small model) base mount	GC□HS1□	XYBG (medium model + medium model) high-speed type + Z-axis (small model) slider mount
G1J□HB2□	XYG (large model + medium model) high-speed long type + Z-axis (medium model 100W) base mount	GC□HB2□	XYBG (medium model + medium model) high-speed type + Z-axis (medium model 100W) base mount	GC□HS3□	XYBG (medium model + medium model) high-speed type + Z-axis (medium model 200W) slider mount
G1J□HB3□	XYG (large model + medium model) high-speed long type + Z-axis (medium model 200W) base mount	GC□HB3□	XYBG (medium model + medium model) high-speed type + Z-axis (medium model 200W) base mount	GC□MS1□	XYBG (medium model + medium model) medium-speed type + Z-axis (small model) slider mount
G2J□HB1□	XYG (large model + medium model) high-speed long type + Z-axis (small model) base mount	GC□MB2□	XYBG (medium model + medium model) medium-speed type + Z-axis (medium model 100W) base mount	GC□MS3□	XYBG (medium model + medium model) medium-speed type + Z-axis (medium model 200W) slider mount
G2J□HB2□	XYG (large model + medium model) high-speed long type + Z-axis (medium model 100W) base mount	GC□MB3□	XYBG (medium model + medium model) medium-speed type + Z axis (medium model 200W) base mount	GD□HS1□	XYBG (medium model + medium model) high-speed long type + Z-axis (small model) slider mount
G2J□HB3□	XYG (large model + medium model) high-speed long type + Z-axis (medium model 200W) base mount	GD□HB1□	XYBG (medium model + medium model) high-speed long type + Z-axis (small model) base mount	GD□HS3□	XYBG (medium model + medium model) high-speed long type + Z-axis (medium model 200W) slider mount
G1J□HS1□	XYG (large model + medium model) high-speed long type + Z-axis (small model) slider mount	GD□HB2□	XYBG (medium model + medium model) high-speed long type + Z-axis (medium model 100W) base mount	GE□HS1□	XYBG (large model + medium model) high-speed type + Z-axis (small model) slider mount
G1J□HS2□	XYG (large model + medium model) high-speed long type + Z-axis (medium model 100W) slider mount	GD□HB3□	XYBG (medium model + medium model) high-speed long type + Z-axis (medium model 200W) base mount	GE□HS3□	XYBG (large model + medium model) high-speed type + Z-axis (medium model 200W) slider mount
G1J□HS3□	XYG (large model + medium model) high-speed long type + Z-axis (medium model 200W) slider mount	GE□HB1□	XYBG (large model + medium model) high-speed type + Z-axis (small model) base mount	GE□MS1□	XYBG (large model + medium model) medium-speed type + Z-axis (small model) slider mount
G2J□HS1□	XYG (large model + medium model) high-speed long type + Z-axis (small model) slider mount	GE□HB2□	XYBG (large model + medium model) high-speed type + Z-axis (medium model 100W) base mount	GE□MS3□	XYBG (large model + medium model) medium-speed type + Z-axis (medium model 200W) slider mount
G2J□HS2□	XYG (large model + medium model) high-speed long type + Z-axis (medium model 100W) slider mount	GE□HB3□	XYBG (large model + medium model) high-speed type + Z-axis (medium model 200W) base mount	GF□HS1□	XYBG (large model + medium model) high-speed long type + Z-axis (small model) slider mount
G2J□HS3□	XYG (large model + medium model) high-speed long type + Z-axis (medium model 200W) slider mount	GF□HB1□	XYBG (large model + medium model) high-speed long type + Z-axis (small model) base mount	GF□HS3□	XYBG (large model + medium model) high-speed long type + Z-axis (medium model 200W) slider mount
		GF□HB2□	XYBG (large model + medium model) high-speed long type		

GF□HB3□ XYBG (large model + medium model) high-sp + Z-axis (medium model 200W) base mount