contasana poom 1 CSB/CSPB

The ICSA Series Cartesian Robots Have Been Totally Upgraded!

The ICSB/ICSPB Cartesian robots are pre-configured units based on the seven 2-axis configurations and seven 3-axis configurations that are frequently used. These robots are ready to be assembled and include the cabling and brackets so that they can be installed in your equipment and used immediately after delivery.

ICSB Series [Standard Specifications] / ICSPB Series [High-Precision Specifications]

Features

1
 Great Improvements in Performance

Great improvements in precision, payload, acceleration and deceleration compared to the conventional ICSA series models.

Positioning repeatability

Standard Specifications
$\pm 0.02 \mathrm{~mm} \rightarrow \pm 0.01 \mathrm{~mm}$
High-Precision Specifications
$\pm 0.01 \mathrm{~mm} \rightarrow \pm 0.005 \mathrm{~mm}$

Acceleration and deceleration

Rated acceleration/deceleration
$0.3 \mathrm{G} \rightarrow 0.4 \mathrm{G}$
Maximum acceleration/deceleration
$1.0 G \rightarrow 1.2 \mathrm{G}$
Note: Positioning repeatability conforms to the specification of each configured axis.

Many variations available

Seven types of configurations are provided for 2-axis and 3 -axis units; a total of 834 types of variations including axis size and configuration direction can be selected.

3

 Cable track option made availableA cable track for wiring of a customer provided device is an option that is available with the XYB/XYBG types.

For details, see page 14

No cable track overhang
No overhang from the main body caused by changes in the cable track mounting position; no need to worry about interference from peripheral devices.

Variations

2-axis Configurations

Y -axis base mount
XYB type
$(\rightarrow$ P. 17 $)$

Z-axis base mount
YZB type
$(\rightarrow$ P. 97)

YZB type
\rightarrow P. 97)

Y-axis slider mount

Z-axis upright mount

Z-axis slider mount

YZS type

 $(\rightarrow$ P. 87)

Y-axis flat-mounted gantry
XYG type
$(\rightarrow$ P. 109 $)$

Y -axis side-mounted gantry
XYBG type $(\rightarrow$ P. 113)

3-axis Configurations

2-axis Configuration Explanation of Types of Robots

A selection of configurations for seven frequently used types which include the cabling and brackets ready to be assembled.
The line up ranges from lightweight to heavyweight, short stroke to long stroke; the optimal type can be selected according to use for each configuration.

1 XYB (Y-axis Base Mount) Type $\quad \rightarrow$ P. 17

A basic configuration type where the Y-axis base is mounted to the X -axis bracket. This actuator operates with a device or Z-axis attached to the Y -axis slider.

Point 1

The Y-axis configuration direction can be selected from one of four patterns (see the diagram at right).

Point 2

Select the Y-axis wiring specification from the two options of self-standing cable and cable track.

- Configuration direction

2 XYS (Y-axis Slider Mount) Type

\rightarrow P. 57

The Y -axis slider is mounted to the X -axis bracket in a manner allowing the Y-axis to move. Use this type when the Y-axis itself must be moved back and forth to avoid an obstacle, etc.

- Point 1
Y-axis configuration direction can be selected from one of four patterns (see the diagram at right).

Point 2
Only the self-standing cable option is available for the Y -axis wiring specification.

The Z-axis (vertical axis) is positioned vertically on the X-axis. Use this type in
 such applications as inserting loads into a stacker or moving a pallet up and down.

-Point 1

The Z-axis configuration direction can be selected from one of six patterns (see the diagram at right).

-Point 2

Since the Z-axis comes standard with a brake, the slider will not drop even when the power is turned off.

Point 3

The maximum stroke is 2500 mm for the X -axis and 500 mm for the Z -axis. (Consult IAI if you need a longer stroke.)

Configuration direction

\rightarrow P. 87

The Y -axis is oriented horizontally on its side and its slider is connected to the slider of the Z-axis (vertical axis). Since the body of the Z-axis moves vertically, this type can be fitted with tooling or other devices on the Z-axis to transfer loads or perform other operations.

Point 1

Since the Z-axis comes standard with a brake, the slider will not drop even when the power is turned off.

Configuration direction

Point 2

A self-standing cable comes as standard for the Y -axis wiring specification, however, a cable track can also be accommodated (as a custom order).

5 YZB (Z-axis Base Mount) Type \rightarrow P. 97

The Y-axis is horizontally oriented on its side and its slider is mounted to the slider of the Z-axis (vertical axis). Since the Z-axis moves vertically, this type can be fitted with tooling or other devices on the Z-axis to transfer loads or perform other operations.

Point 1

This type has a greater payload capacity than the YZS (Z-axis slider mount) type.

-Point 2

Since the Z-axis comes standard with a brake, the slider will not drop even when the power is turned off.

Configuration direction

Point 3

Select the Z -axis wiring specification from the two options of self-standing cable and cable track.

6 XYG (Y-axis Flat-mounted Gantry) Type \rightarrow P. 109

The Y-axis of the XYB type is placed flat and a support guide is attached at the end of the Y -axis. Use this type for transferring heavy objects or when the Y-axis stroke is long and the end might sag.

Point 1
A maximum of 45 kg can be transferred.

Configuration direction

Point 2

The maximum stroke is 2500 mm for the X -axis and 1200 mm for the Y -axis. (Consult IAI if you need a longer stroke.)

The Y -axis of the XYB type is placed sidemounted and a support guide is attached at the end of the Y-axis. Use this type for transferring heavy objects or when sagging at the end of the Y-axis would become a problem.

Point 1

A maximum of 60 kg can be transferred.
Point 2
A shorter stroke than the XYG type can be set for both the X -axis and Y -axis.

Configuration direction

3-axis Configuration Explanation of Types of Robots

Based on the 2-axis configuration XYB (XY base fixed) type and XYG/XYBG (XY gantry) type, this is a 3-axis configuration with an additional vertical Z-axis. An XZY type with an added Y-axis based on the XZ (Z-axis upright mount) type is also included in the line-up.

1 XYB (Y-axis Base Mount) + Z-axis Base Mount Type \rightarrow P. 135

With this type, the base of the Z-axis is mounted to the Y -axis slider of the XYB type (The Y-axis base is mounted to the X-axis bracket).

Point

The main body of the Z-axis is mounted and the slider moves up and down. It has a greater load capacity vertically than the Z-axis slider mounted type.

Configuration direction

2 XYB (Y-axis Base Mount) + Z-axis Slider Mount Type \rightarrow P. 189

With this type, the slider of the Z-axis is mounted to the Y-axis slider of the $X Y B$ type (The Y-axis base is mounted to the X -axis bracket).

Point

The main body of the Z-axis moves up and down, making it suitable when there are obstacles to the movement.

Configuration direction

3 XZ (Z-axis Upright Mount) + Y-axis Slider Mount Type \rightarrow P. 225

This is a type where the slider of the Y -axis is mounted to the slider of the Z-axis of the XZ type (Z-axis is upright mounted on the X-axis).

Point

Suitable for insertion, movement of work parts to a stacker and moving of objects placed on the surface of a wall.

Configuration direction

With this type, the base of the Z-axis is mounted on the Y -axis slider of the XYG type (a guide is placed parallel to the X -axis and the Y -axis is supported by the X-axis and the guide).

Point

The main body of the Z-axis is mounted and the slider moves up and down. It has a greater load capacity vertically than the Z-axis slider mounted type.

Configuration direction

5 XYG (Y-axis Flat-mounted Gantry) + Z-axis Slider Mount Type \rightarrow P. 241

With this type, the slider of the Z-axis is mounted on the slider of the Y-axis of the XYG type (a guide is placed parallel to the X -axis and the Y -axis is supported by the X-axis and the guide).

Point

The main body of the Z-axis moves up and down, making it suitable when there are obstacles to the movement.

Configuration direction

6 XYBG (Y-axis Side-mounted Gantry) + Z-axis Base Mount Type \rightarrow P. 253

With this type, the base of the Z -axis is mounted on the slider of the Y-axis of the XYBG type (a support guide is attached at the end of the Y-axis of the XYB type).

Point

The main body of the Z-axis is mounted and the slider moves up and down. It has a greater load capacity vertically than Z-axis slider mounted type.

Configuration direction

7 XYBG (Y-axis Side-mounted Gantry) + Z-axis Slider Mount Type \rightarrow P. 285

Configuration direction

2－axis Configuration Model Selection Tables by Type

In the following Model Specification Tables by Type，please select the best suitable model by comparing the

 stroke，speed and payload．Cartesian Robot XYB（Y－axis Base Mount）Type

Classification	$\begin{gathered} \text { X-axis stroke } \\ (\mathrm{mm}) \end{gathered}$	Payload by Y －axis stroke（kg）													Max．speed（mm／s）		Model	Page
		$\underset{(m)}{100}($	$\underset{(m m)}{150}$	$\underset{(m \mathrm{~m})}{200}$	$\underset{(\mathrm{mm})}{250}$	$\begin{gathered} 300 \\ (m m) \end{gathered}$	$\underset{(m m)}{350}$	$\underset{(\mathrm{mm})}{400}$	$\underset{(m m)}{450}$	$\begin{gathered} 500 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 550 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 600 \\ & (m m) \end{aligned}$	$\begin{gathered} 650 \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(100)}{700}$	X－axis	Y －axis		
B $\square \square \square$	100～900	6.1	5.8	5.5	5.3	5.0	4.7	4.5	－						960	960	BA■H	\rightarrow P． 17
XY 2－axis configuration		19.4	19.0	16.4	13.9	12.0	10.3	9.0	－						480	480	BA■M	\rightarrow P． 19
Y －axis base mount	100～1100	12.0	12.0	12.0	11.8	11.5	11.3	11.0	－						1200	960	BB $\square \mathrm{H}$	\rightarrow P． 21
		20.0	20.0	20.0	20.0	20.0	20.0	20.0	18.6	16.6	－				1200	1200	BCD	\rightarrow P． 25
		25.0	25.0	25.0	25.0	25.0	23.0	22.0	－						600	480	BBロM	\rightarrow P． 23
		30.0	30.0	29.5	29.2	26.7	23.5	20.9	18.6	16.6	－				600	600	BC■M	\rightarrow P． 27
	100～1300	20.9	20.1	19.3	18.5	17.7	16.9	16.2	15.4	14.6	13.8	13.1	12.2	11.5	2400	2400	BG \square S	\rightarrow P． 41
		23.1	22.3	21.5	20.7	20.0	19.2	18.5	17.6	16.8	16.0	15.3	14.5	13.8	2400	2400	BKロH	\rightarrow P． 45
		25.7	25.1	24.6	23.9	23.4	22.9	22.3	21.7	21.2	20.5	20.0	19.4	18.9	2400	1800	BEDS	\rightarrow P． 31
		45.0	45.0	45.0	45.0	43.4	38.8	34.9	31.5	28.6	26.0	23.7	21.6	19.7	1200	1200	BEDH	\rightarrow P． 33
		60.0	60.0	55.6	48.8	43.4	38.8	34.9	31.5	28.6	26.0	23.7	21.6	19.7	600	600	BEDM	\rightarrow P． 35
		64.5	63.7	62.9	62.1	59.9	54.1	49.8	44.8	40.9	37.4	34.3	31.5	28.9	1200	1200	BKロМ	\rightarrow P． 47
	100～1500	36.4	35.6	34.8	34.0	33.3	32.4	31.7	30.9	30.1	27.4	24.6	22.0	19.6	2500	2400	BMロ	\rightarrow P． 53
		78.6	70.9	61.8	54.2	48.0	42.7	38.2	34.1	30.6	27.4	24.6	22.0	19.6	1250	1200	BMDM	\rightarrow P． 55
	800～2000	20.0	20.0	20.0	20.0	20.0	20.0	20.0	18.6	18.6	－				1200	1200	BDロH	\rightarrow P． 29
	1000～2500	20.9	20.1	19.3	18.5	17.7	16.9	16.2	15.4	14.6	13.8	13.1	12.2	11.5	2400	2400	BH■S	\rightarrow P． 43
		25.7	25.1	24.6	23.9	23.4	22.9	22.3	21.7	21.2	20.5	20.0	19.4	18.9	2400	1800	BF■ \square	\rightarrow P． 37
		45.0	45.0	45.0	45.0	43.4	38.8	34.9	31.5	28.6	26.0	23.7	21.6	19.7	1200	1200	BFПH	\rightarrow P． 39
	900～2500	36.6	35.8	35.0	34.2	33.5	32.7	32.0	31.1	30.3	29.5	28.8	28.0	27.3	2400	2400	BLロH	\rightarrow P． 49
		65.0	65.0	65.0	65.0	62.3	55.9	50.7	46.1	42.0	38.4	35.2	32.2	29.6	1200	1200	BLDM	\rightarrow P． 51

Cartesian Robot XYS（Y－axis Slider Mount）Type

Classification	$\begin{aligned} & \text { X-axis stroke } \\ & (\mathrm{mm}) \end{aligned}$	Payload by Y －axis stroke（kg）													Max．speed（mm／s）		Model	Page
		$\begin{gathered} 100 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 150 \\ & (\mathrm{~mm}) \end{aligned}$	${ }_{(\mathrm{mm})}^{200}$	$\begin{gathered} 250 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 300 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} 350 \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{400}$	$\underset{(m m)}{450}$	$\begin{gathered} 500 \\ (\mathrm{~mm}) \end{gathered}$	550	$\begin{gathered} 600 \\ (m) \end{gathered}$	${ }_{(m \mathrm{~mm})}^{650}$	$\begin{gathered} 7 \\ (m m) \end{gathered}$	X－axis	Y －axis		
S $\square$$\square$$\square$$\left[\begin{array}{l} \text { XY 2-axis configuration } \\ \mathrm{Y} \text {-axis slider mount } \end{array}\right]$	100～600	6.6	6.3	6.1	5.8	5.5	4.9	3.9	－						960	960	SA■H	\rightarrow P． 57
		19.9	15.1	10.8	8.1	6.3	4.9	3.9	－						480	480	SA■M	\rightarrow P． 59
		10.0	9.4	8.7	8.2	7.7	7.2	6.7	6.2	5.6	－				1200	1200	S1CDH	\rightarrow P． 61
		22.6	21.8	21.0	20.2	19.5	18.7	16.9	13.8	11.3	9.2	7.4			2400	2400	SGロS	\rightarrow P． 67
	100～800	27.5	26.7	26.0	25.2	24.4	20.8	17.1	14.0	11.6	9.4	7.6			1200	1200	SG■H	\rightarrow P． 69
		30.0	29.0	27.4	21.0	16.6	13.4	10.9	8.9	7.3	－				600	600	S1C■M	\rightarrow P． 63
		31.7	31.1	27.1	20.7	16.4	13.2	10.7	8.7	7.0	－				1200	1200	S2CロH	\rightarrow P． 65

Cartesian Robot XZ（Z－axis Upright Mount）Type

Classification	X－axis stroke （mm）	Payload by Z－axis stroke（kg）													Max．speed（mm／s）		Model	Page
		$\underset{(m)}{100}$	$\begin{gathered} 150 \\ (m m) \end{gathered}$	$\underset{(\mathrm{mm})}{200}$	$\underset{(m)}{250}$	$\begin{aligned} & 300 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} 350 \\ (m m) \end{gathered}$	$\begin{aligned} & 400 \\ & (\mathrm{~m}) \end{aligned}$	$\begin{gathered} 450 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 500 \\ & (\mathrm{~mm}) \end{aligned}$	${ }_{(\mathrm{mm})}$	$\underset{(m m)}{600}$	${ }_{(m \mathrm{~m})}^{650}$	$\begin{gathered} 700 \\ (\mathrm{~mm}) \end{gathered}$	X－axis	Z－axis		
Z $\square$$\square$$\square$$\left[\begin{array}{l} \text { XZ 2-axis configuration } \\ \text { Z-axis upright mount } \end{array}\right]$	100～900	7.0	7.0	6.6	5.6	4.8	－								960	480	ZAロH	\rightarrow P． 71
		9.2	7.8	6.7	5.7	4.8	－								480	240	ZAロM	\rightarrow P． 73
	100～1100	10.0	10.0	10.0	10.0	10.0	9.7	8.4	－						1200	600	Z1Сロ	\rightarrow P． 75
		18.3	16.0	14.1	12.3	10.7	9.3	8.0	－						1200	600	Z2CロH	\rightarrow P． 79
		18.9	16.7	14.8	12.9	11.4	9.8	9.0	－						600	300	Z1C口M	\rightarrow P． 77
	100～1300	20.0	19.7	17.4	15.2	13.3	11.4	9.8	8.2	6.7	－				2400	1200	ZGロS	\rightarrow P． 83
	800～2000	18.3	16.0	14.1	12.3	10.7	9.3	8.0	－						1200	600	ZDロH	\rightarrow P． 81
	1000～2500	20.0	19.7	17.4	15.2	13.3	11.4	9.8	8.2	6.7	－				2400	1200	ZH■S	\rightarrow P． 85

Cartesian Robot YZS（Z－axis Slider Mount）Type

Classification	Y－axis stroke （mm）	Payload by Z－axis stroke（kg）													Max．speed（mm／s）		Model	Page
		$\begin{aligned} & 100 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 150 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 200 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 250 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 300 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 350 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 400 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 450 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 500 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 550 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 600 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 650 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 700 \\ & (\mathrm{~mm}) \end{aligned}$	Y－axis	Z－axis		
YS	100～500	3.9	3.5	3.2	2.8	2.5	2.2	1.9	－						960	480	YSA $\square \mathrm{H}$	\rightarrow P． 87
$\left[\begin{array}{l}\text { YZ 2－axis configuration } \\ \text { Z－axis slider mount }\end{array}\right]$		11.0	10.6	10.3	9.9	9.6	8.9	8.6	－						480	240	YSA $\square \mathrm{M}$	\rightarrow P． 89
		13.3	12.8	12.2	11.6	11.1	10.4	9.9	9.4	8.8		－			600	300	YSC $\square \mathrm{M}$	\rightarrow P． 93
	100～700	13.6	12.9	12.4	11.7	11.1	10.5	10.0	9.3	8.7		－			1200	600	YSC口H	\rightarrow P． 91
		28.8	28.0	27.2	26.4	25.7	24.8	24.1	23.3	22.5		－			1200	600	YSG $\square \mathrm{H}$	\rightarrow P． 95

Cartesian Robot YZB（Z－axis Base Mount）Type

Classification	Y－axis stroke （mm）	Payload by Z－axis stroke（kg）													Max．speed（mm／s）		Model	Page
		$\underset{(\mathrm{mm})}{100}$	$\underset{(\mathrm{mm})}{150}$	$\begin{aligned} & 200 \\ & (\mathrm{~mm}) \end{aligned}$	$\underset{(\mathrm{mm})}{250}($	$\begin{aligned} & 300 \\ & (\mathrm{~mm}) \end{aligned}$	$\underset{(\mathrm{mm})}{350}$	$\begin{aligned} & 400 \\ & (\mathrm{~m}) \end{aligned}$	$\underset{\substack{450 \\(m)}}{ }$	$\underset{\substack{500 \\(m)}}{ }$	550	$\underset{(\mathrm{mm})}{600}$	$\underset{(\mathrm{mm})}{650}$	$\begin{aligned} & 700 \\ & (\mathrm{~mm}) \end{aligned}$	Y －axis	Z－axis		
YB $\square \square \square$	100～900	7.0	7.0	6.7	6.3	6.1	5.7	5.4	－						960	480	YBA■H	$\rightarrow \mathrm{P} .97$
YZ 2－axis configuration ］		14.0	14.0	14.0	14.0	14.0	14.0	14.0	－						480	240	YBA $\square \mathrm{M}$	\rightarrow P． 99
	100～1100	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		－			1200	600	YBCDH	\rightarrow P． 101
		20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		－			600	300	YBC■M	\rightarrow P． 103
	100～1300	20.0	20.0	20.0	20.0	20.0	20.0	19.7	18.9	18.0		－			2400	1200	YBG \square S	\rightarrow P． 105
		40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0		－			1200	600	YBGロ	\rightarrow P． 107

Cartesian Robot XYG（Y－axis Flat－mounted Gantry）Type

Classification	$\underset{(\mathrm{mm})}{\substack{\text { X-axis stroke }}}$	Payload by Y －axis stroke（kg）										Max．speed（mm／s）		Model	Page
		500 $(\mathrm{~mm})$	$\begin{gathered} 550 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 600 \\ (m m) \end{gathered}$	650 $(\mathrm{~mm})$	700 $(\mathrm{~mm})$	$\begin{aligned} & 800 \\ & (\mathrm{~mm}) \end{aligned}$	$\underset{(m \mathrm{~m})}{900}$	$\begin{aligned} & 1000 \\ & (\mathrm{~mm}) \end{aligned}$	${\underset{(1)}{(100})}_{(m m)}$	$\begin{gathered} 1200 \\ (\mathrm{~mm}) \end{gathered}$	X －axis	Y －axis		
$\begin{aligned} & \text { G- }-\square \square \\ & {\left[\begin{array}{l} \text { XY 2-axis gantry } \\ \text { configuration Y-axis } \\ \text { filat-mounted gantryy } \end{array}\right]} \end{aligned}$	1000～2500	45.0					－					1200	1200	G1JDH	\rightarrow P． 109
		－					45.0	43.6	38.3	33.7	29.6	1200	1200	G2J \square H	\rightarrow P． 111

Cartesian Robot XYBG（Y－axis Side－mounted Gantry）Type

Classification	X －axis stroke （mm）	Payload by Y －axis stroke（kg）																	Max．speed（mm／s）		Model	Page
		$\underset{(m)}{300}$	$\begin{gathered} \substack{350 \\ (\mathrm{~mm})} \end{gathered}$	$\underset{(\mathrm{mm})}{400}$	450	$\underset{\substack{500 \\(\mathrm{~mm})}}{ }$	550	$\underset{(\mathrm{mm})}{600}$	650	$\begin{gathered} 700 \\ (\mathrm{~mm}) \end{gathered}$	750	$\begin{aligned} & 800 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 850 \\ & (\mathrm{~mm}) \end{aligned}$	$\underset{(m \mathrm{~m})}{900}$	$\underset{(\mathrm{mm})}{950}$	$\begin{gathered} 1000 \\ (\mathrm{~mm}) \end{gathered}$	$\underset{\substack{1050 \\(\mathrm{~mm})}}{ }$	$\begin{gathered} 1100 \\ (\mathrm{~mm}) \end{gathered}$	X－axis	Y－axis		
G $\square$$\square$$\square$$\left[\begin{array}{l} \text { XY 2-axis configuration } \\ \text { Y-axis side-mounted } \\ \text { gantry } \end{array}\right]$	100～1100	12.9	12.5	12.3	11.9	11.6	11.2	10.9	－										1200	960	GBロH	\rightarrow P． 113
		27.0						26.8	－										600	480	GBロM	\rightarrow P． 115
		23.0					21.8	19.5	17.5	15.7	－								1200	1200	GCロH	\rightarrow P． 117
		26.6	26.0	25.4	24.9	24.3	21.8	19.5	17.5	15.7	－								600	600	GC■M	\rightarrow P． 119
L	100～1300	45.0				41.5	37.8	34.6	31.7	29.1	26.7	24.5	22.5	20.7	－				1200	1200	GEDH	\rightarrow P． 123
N		60.0	55.8	50.3	45.6	41.5	37.8	34.6	31.7	29.1	26.7	24.5	22.5	20.7					600	600	GEDM	\rightarrow P． 125
	100～1300	－				34.5	31.1	28.1	25.3	22.8	20.4	18.3	16.3	14.5	12.7	11.1	9.5	8.1	1200	1200	GGロH	\rightarrow P． 129
		－				34.5	31.1	28.1	25.3	22.8	20.4	18.3	16.3	14.5	12.7	11.1	9.5	8.1	600	600	GG■M	\rightarrow P． 131
	800～2000	23.0					21.8	19.5	17.5	15.7	－								1200	1200	GDロH	\rightarrow P． 121
	1000～2500	45.0				41.5	37.8	34.6	31.7	29.1	26.7	24.5	22.5	20.7					1200	1200	GFロH	\rightarrow P． 127
		－				34.5	31.1	28.1	25.3	22.8	20.4	18.3	16.3	14.5	12.7	11.1	9.5	8.1	1200	1200	GHロH	\rightarrow P． 133

3-axis Configuration Model Selection Tables by Type

In the following Model Specification Tables by Type, please select the best suitable model by comparing the stroke, speed and payload.

Cartesian Robot XYB + Z-axis Base Mount Type

Cartesian Robot XYB + Z-axis Slider Mount Type

Classification	X-axis stroke (mm)	Y -axis stroke (mm)	Z-axis stroke (mm)	Payload (kg)	Maximum speed (mm / s)			Model	Page
					X-axis	Y-axis	Z-axis		
B $\square$$\square$$\square$ S $\square$$\square$$\left[\begin{array}{l} \text { XYB }+ \text { Z-axis } \\ \text { 3-axis configuration } \\ \text { Z-axis slider mount } \end{array}\right]$	100~900	100~400	100~300	4.3~2.8	480	480	480	BA \square MS1M	\rightarrow P. 189
				11.3~4.0			240	BA \square MS1L	
	100~1000			4.3~2.8	1200	960	480	BB $\square \mathrm{HS1M}$	\rightarrow P. 191
				8.1~6.6			240	BB $\square \mathrm{HS} 1 \mathrm{~L}$	
				4.3~2.8	600	480	480	BB \square MS1M	\rightarrow P. 193
				11.3~9.8			240	BB \square MS1L	
		100~500	100~400	4.3~2.1	1200	1200	480	BC■HS1M	\rightarrow P. 195
				11.3~9.1			240	BCDHS1L	
				13.2~5.5	1200	1200	600	BC■HS3M	\rightarrow P. 197
				14.3~5.5	600	600	600	BC \square MS3M	\rightarrow P. 199
	800~2000			4.3~2.1	1200	1200	480	BD $\square \mathrm{HS1M}$	\rightarrow P. 201
				11.3~9.1			240	BD $\square \mathrm{HS} 1 \mathrm{~L}$	
				13.2~5.5	1200	1200	600	BD \square HS3M	\rightarrow P. 203
	100~1000			4.3~2.1	1200	1200	480	BEDHS1M	\rightarrow P. 205
				11.3~9.1			240	BEDHS1L	
				14.3~8.5	1200	1200	600	BEDHS3M	\rightarrow P. 207
	1000~2500			4.3~2.1	1200	1200	480	BF■HS1M	\rightarrow P. 209
				11.3~9.1			240	BF $\square \mathrm{HS1L}$	
		100~700		14.3~8.5	1200	1200	600	BF■HS3M	\rightarrow P. 211
	100~1000		100~500	12~5.0	2400	2400	1200	BK $\square \mathrm{HS} 4 \mathrm{H}$	\rightarrow P. 213
				25.1~9.0			600	BK $\square \mathrm{HS4M}$	
				12~5.0	1200	1200	1200	BK $\square \mathrm{MS4H}$	\rightarrow P. 215
				32~12.1			600	BKロMS4M	
	900~2500			12~5.0	2400	2400	1200	BLDHS4H	\rightarrow P. 217
				25.1~9.0			600	BLDHS4M	
				12~5.0	1200	1200	1200	BL $\square \mathrm{MS} 4 \mathrm{H}$	\rightarrow P. 219
				32~12.1			600	BL \square MS4M	
	100~1000			12~5.0	2500	2400	1200	BM $\square \mathrm{HS4H}$	\rightarrow P. 221
				32~6.5	1250	1200	600	BM \square MS4M	\rightarrow P. 223

Cartesian Robot XZ + Y-axis Slider Mount Type

Classification	$\begin{gathered} \text { X-axis stroke } \\ (\mathrm{mm}) \end{gathered}$	Y-axis stroke (mm)	Z-axis stroke (mm)	Payload (kg)	Maximum speed (mm / s)			Model	Page
					X-axis	Y-axis	Z-axis		
23 S \square $\left[\begin{array}{l}X Z+Y \text {-axis } \\ 3 \text {-axis configuration } \\ Y \text {-axis slider mount }\end{array}\right.$	120~1070	100~400	100~400	13~8.7	1200	600	960	Z3C■HS1H	\rightarrow P. 225
	120~1270	100~500	100~500	21.2~7.0	1200	600	1200	Z3GロHS2H	\rightarrow P. 227

Cartesian Robot XYG＋Z－axis Base Mount Type

Classification	X－axis stroke （ mm ）	Y －axis stroke （ mm ）	Z－axis stroke （mm）	Payload （kg）	Maximum speed（ mm / s ）			Model	Page
					X－axis	Y－axis	Z－axis		
G $\square$$\square$ HB $\square$$\square$$\left[\begin{array}{l} \text { XYG }+ \text { Z-axis } \\ \text { 3-axis configuration } \\ Z \text {-axis base mount } \end{array}\right]$	1000～2500	500～700	100～600	3.5	1200	1200	960	G1J $\square \mathrm{HB} 1 \mathrm{H}$	\rightarrow P． 222
				7.0			480	G1J \square HB1M	
				14.0			240	G1J $\square \mathrm{HB1L}$	
				5.0	1200	1200	1200	G1J $\square \mathrm{HB2H}$	\rightarrow P． 231
				10.0			600	G1J \square HB2M	
				20～18．0			300	G1J \square HB2L	
				10.0	1200	1200	1200	G1J $\square \mathrm{HB3H}$	\rightarrow P． 233
				20～18．0			600	G1J \square HB3M	
		800～1200	100～600	3.5	1200	1200	960	G2J $\square \mathrm{HB} 1 \mathrm{H}$	\rightarrow P． 235
				7.0			480	G2J $\square \mathrm{HB1M}$	
				14.0			240	G2J $\square \mathrm{HB1L}$	
				5.0	1200	1200	1200	G2J $\square \mathrm{HB2H}$	\rightarrow P． 237
				10.0			600	G2J \square HB2M	
				20～15．1			300	G2J \square HB2L	
				10.0	1200	1200	1200	G2J $\square \mathrm{HB3H}$	\rightarrow P． 239
				20～14．5			600	G2J \square HB3M	

Cartesian Robot XYG＋Z－axis Slider Mount Type

Classification	X－axis stroke(mm)	Y －axis stroke （mm）	$\begin{aligned} & \text { Z-axis stroke } \\ & (\mathrm{mm}) \end{aligned}$	Payload （kg）	Maximum speed（ mm / s ）			Model	Page
					X－axis	Y－axis	Z－axis		
G $\square$$\square$ HS $\square$$\left[\begin{array}{l} \text { XYG + Z-axis } \\ \text { 3-axis configuration } \\ \text { Z-axis slider mount } \end{array}\right]$	1000～2500	500～700	100～400	4．3～2．1	1200	1200	480	G1JロHS1M	\rightarrow P． 241
				11．3～9．1			240	G1J■HS1L	
			100～500	14．8～9．8	1200	1200	300	G1J \square HS2L	\rightarrow P． 243
				14．3～9．2	1200	1200	600	G1J■HS3M	\rightarrow P． 245
		800～1200	100～400	4．3～2．1	1200	1200	480	G2J■HS1M	\rightarrow P． 247
				11．3～9．1			240	G2JロHS1L	
			100～500	14．8～9．8	1200	1200	300	G2JロHS2L	\rightarrow P． 249
				14．3～9．2	1200	1200	600	G2J■HS3M	\rightarrow P． 251

Cartesian Robot XYBG + Z-axis Base Mount Type

Classification	X-axis stroke (mm)	Y-axis stroke (mm)	Z-axis stroke (mm)	Payload (kg)	Maximum speed (mm / s)			Model	Page
					X-axis	Y-axis	Z-axis		
G $\square$$\square$$\square$ B $\square$$\square$$\left[\begin{array}{l} \text { XYBG }+Z \text {-axis } \\ \text { 3-axis configuration } \\ \text { Z-axis base mount } \end{array}\right]$	100~1100	300~600	100~300	7~3.6	1200	960	480	GB $\square \mathrm{HB1M}$	\rightarrow P. 253
				7.6~4.5			240	GB $\square \mathrm{HB} 1 \mathrm{~L}$	
				7.0	600	480	480	GB \square MB1M	\rightarrow P. 255
				14.0			240	GB \square MB1L	
		300~700	100~400	7.0	1200	1200	480	GC \square HB1M	\rightarrow P. 257
				14~13.6			240	GCDHB1L	
				10~8.0	1200	1200	600	GC \square HB2M	\rightarrow P. 259
				13~8.0			300	GCDHB2L	
				10~7.5	1200	1200	1200	GC口HB3H	\rightarrow P. 261
				17.6~8	600	600	300	GC■MB2L	\rightarrow P. 263
				17.1~7.5	600	600	600	GC■MB3M	\rightarrow P. 265
	800~2000			7.0	1200	1200	480	GD $\square \mathrm{HB1M}$	\rightarrow P. 267
				14~13.6			240	GD $\square \mathrm{HB} 1 \mathrm{~L}$	
				10~8.0	1200	1200	600	GD $\square \mathrm{HB2M}$	\rightarrow P. 269
				13~8.0			300	GD $\square \mathrm{HB} 2 \mathrm{~L}$	
				10~7.5	1200	1200	1200	GD■HB3H	\rightarrow P. 271
	100~1300	300~900	100~500	14.0	1200	1200	240	GEDHB1L	\rightarrow P. 273
				10.0	1200	1200	600	GEDHB2M	\rightarrow P. 275
				20~11.8			300	GEDHB2L	
				10.0	1200	1200	1200	GEDHB3H	\rightarrow P. 277
				20~11.2			600	GEDHB3M	
				31.8~11.2			300	GEDHB3L	
	1000~2500			14.0	1200	1200	240	GF■HB1L	\rightarrow P. 279
				10	1200	1200	600	GF■HB2M	\rightarrow P. 281
				20~11.8			300	GF口HB2L	
				10.0	1200	1200	1200	GF $\square \mathrm{HB} 3 \mathrm{H}$	\rightarrow P. 283
				20~11.2			600	GF■HB3M	
				31.8~11.2			300	GF \square HB3L	

Cartesian Robot XYBG + Z-axis Slider Mount Type

Classification	X-axis stroke (mm)	Y-axis stroke (mm)	Z-axis stroke (mm)	Payload (kg)	Maximum speed (mm/s)			Model	Page
					X-axis	Y -axis	Z-axis		
G $\square$$\square$$\square$ S $\square$$\square$$\left[\begin{array}{l} \text { XYBG }+ \text { Z-axis } \\ 3 \text {-axis configuration } \\ \text { Z-axis slider mount } \end{array}\right]$	100~1000	300~600	100~300	4.3~2.8	1200	960	480	GB \square HS1M	\rightarrow P. 285
				8~4.8			240	GB $\square \mathrm{HS} 1 \mathrm{~L}$	
				4.3~2.8	600	480	480	GB \square MS1M	\rightarrow P. 287
				11.3~9.8			240	GB \square MS1L	
		300~700		$4.3 \sim 2.1$	1200	1200	480	GCDHS1M	\rightarrow P. 289
				11.3~9.1			240	GCDHS1L	
				13.1.~8.1	1200	1200	600	GCDHS3M	\rightarrow P. 291
				4.3~2.1	600	600	480	GCDMS1M	\rightarrow P. 293
				11.3~9.1			240	GCDMS1L	
				14.3~8.1	600	600	600	GCDMS3M	\rightarrow P. 295
	800~2000			4.3~2.1	1200	1200	480	GD $\square \mathrm{HS1M}$	\rightarrow P. 297
				11.3~9.1			240	GDDHS1L	
				13.1~8.1	1200	1200	600	GD \square HS3M	\rightarrow P. 299
	100~1000	300~900		4.3~2.1	1200	1200	480	GEDHS1M	\rightarrow P. 301
				11.3~9.1			240	GEDHS1L	
				14.3~10.5	1200	1200	600	GEDHS3M	\rightarrow P. 303
				32.9~13.1			300	GEDHS3L	
				4.3~2.1	600	600	480	GEDMS1M	\rightarrow P. 305
				11.3~9.1			240	GEDMS1L	
				34.3~13.1	600	600	300	GE \square MS3L	\rightarrow P. 307
	1000~2500			$4.3 \sim 2.1$	1200	1200	480	GF■HS1M	\rightarrow P. 309
				11.3~9.1			240	GF■HS1L	
				14.3~10.5	1200	1200	600	GFDHS3M	\rightarrow P. 311
				32.9~13.1			300	GF■HS3L	

Cartesian Robot Cable Wiring

Methods of Wiring and Characteristics

The following two methods can be selected for the wiring cable for the motor/encoder for the second and third axes of Cartesian robots. Please select the type which is suitable for the particular use.

Self-standing cable

 model: SCThe radius of flexure is large so that it does not readily disconnect.
Space is required in the height direction.
Provides user wiring and tubing inside the composite cable.

Cable track
model: CT \square

- Height is kept low and does not require space.
Wiring for devices mounted on the Y -axis and Z -axis can be contained inside the cable track
©Diagram of the Self-standing Cable Wiring

Wiring Details by Type of Configuration

Cartesian robot configured axis cable exit direction and installation direction of sensor differs depending on the type of configuration and the configuration direction. See the following tables for details.
Cable exit direction of the first axis can be changed as an option. (YZS/YZB are excluded)

3-axis Configuration

Type	Configuration direction	First axis		Second axis		Third axis		Wiring for second axis
		Cable exit direction	Limit switch	Cable exit direction	Limit switch	Cable exit direction	Limit switch	
	1	A3S	CL/LL	A1S	C/L	A3S	CL/LL	NC/CT
						A3E		SC
	2	A1S	C/L	A3S	CL/LL	A1S	C/L	NC/CT
						A1E		SC
	3	A3S	CL/LL	A3S	CL/LL	A1S	C/L	NC/CT
						A1E		SC
	4	A1S	C/L	A1S	C/L	A3S	CL/LL	NC/CT
						A3E		SC
XYBZ-axis slider mount	1	A3S	CL/LL	A1S	C/L	A1E	C/L	NC/SC
	2	A1S	C/L	A3S	CL/LL	A3E	CL/LL	
	3	A3S	CL/LL	A3S	CL/LL	A3E	CL/LL	
	4	A1S	C/L	A1S	C/L	A1E	C/L	
$X Z+Y$-axis slider mount	1	A3S	CL/LL	A3E	CL/LL	A3S	C/L	NC/SC
	2	A1S	C/L	A1E	C/L	A1S	CL/LL	
XYG + Z-axis base mount	1	A3S	CL/LL	A3E	C/L	A1S	C/L	NC/CT
	2	A1S	C/L	A1E	CL/LL	A3S	CL/LL	
XYG + Z-axis slider mount	1	A3S	CL/LL	A3E	C/L	A3E	CL/LL	NC/SC
	2	A1S	C/L	A1E	CL/LL	A1E	C/L	
	1	A3S	CL/LL	A1S	C/L	A3S	CL/LL	NC/CT
						A3E		SC
	2	A1S	C/L	A3S	CL/LL	A1S	C/L	NC/CT
						A1E		SC
	3	A3S	CL/LL	A3S	CL/LL	A1S	C/L	NC/CT
						A1E		SC
	4	A1S	C/L	A1S	C/L	A3S	CL/LL	NC/CT
						A3E		SC
	1	A3S	CL/LL	A1S	C/L	A1E	C/L	NC/SC
	2	A15	C/L	A3S	CL/LL	A3E	CL/LL	
	3	A3S	CL/LL	A3S	CL/LL	A3E	CL/LL	
	4	A1S	C/L	A1S	C/L	A1E	C/L	

Cartesian Robot Cable Wiring

Cables between the Cartesian Robot and the Controller

Connect each axis of the Cartesian robot using motor and encoder single axis robot cables to the controller.

Details of Wiring by Type of Configuration
Cable track option for wiring of the customer provided device is available for the Y-axis slider of the XYB, XYBG, and XYG types.

Model Specification Items

The ICSB2, ICSPB2, ICSB3 and ICSPB3 models are made up of the following items.
The selected range for each item (stroke, cable wiring and the like) differs depending on each model.
For details, please refer to each model specification page starts from page 017.
[ICSB2/ICSPB2 Series]

[ICSB3/ICSPB3 Series]


```
(1) Series
Series names are as follows.
ICSB2 :ISB 2-axis configuration
ICSPB2 : ISPB 2-axis configuration
ICSB3 : ISB 3-axis configuration
ICSPB3 : ISPB 3-axis configuration
```


（2）Type

Indicates the configuration patterns，configuration directions，types of model configurations and types of speeds．

2 2－axis												
configuration	$\frac{B}{(1)}$	$\frac{B}{(2)}$	$\frac{1}{(3)}$	$\frac{H}{(4)}$	3 －axis configuration	$\frac{B}{(1)}$	$\frac{B}{(2)}$	$\frac{1}{(3)}$	$\frac{H}{(4)}$	$\frac{B}{(5)}$	$\frac{1}{(6)}$	$\frac{M}{(7)}$

（1）1－2－axis configuration type（＊1）
B：XYB type／S：XYS type／Z：XZ type／YS：YZS type／YB：YZB type／G：XYG type
（2）1－2－axis configuration type
A／B／C／1C／2C／D／E／F／G／H／K／L／M／1J／2J
（3）1－2－axis configuration direction $1 / 2 / 3 / 4$
（4）1－2－axis speed type S：super－high speed type／H：high－speed type／M：medium speed type
（5）Z－axis mount type B：base mount／S：slider mount
（6）Z－axis motor output 1：60W／2：100W／3： $200 \mathrm{~W} / 4: 400 \mathrm{~W}$
（7）Z－axis speed type \quad H：high－speed type／M：medium－speed type／L：low－speed type
（＊）For 3 axes，B（XYB type）and G（XYG type）and Z（XZ type）only

（3）Encoder type

Indicates whether the encoder installed in the actuator is an＂absolute type＂or＂incremental type．＂
A ：Absolute type Since the current slider position will be retained after the power is turned off，homing is not required when the actuator is powered up．
I：Incremental type Since the slider position data are cleared when the power is turned off，homing must be performed every time the actuator is powered up．

（4）First axis details

Indicate the stroke and options of the first axis in the 2－axis and 3－axis configurations．The stroke should be entered in cm units（example： 500 mm stroke $\rightarrow 50$ ）．When multiple options are set，entry should be made in alphabetical order with no hyphens in between．
（Example ：AQ seal＋creep sensor＋limit switch＋non－motor end specification \rightarrow AQCLNM）

（3）Second axis details

Indicate the stroke and options of the second axis in the 2 －axis and 3 －axis configurations．
The same holds for others．

（8）Applicable controller

Indicates the type of controller which is connected．
T1：XSEL－J／K
T2：XSEL－P／Q／R／S，SSEL，SCON

（1）Cable wiring between axes 1－2

Indicates the method of cable wiring from the first axis to the second axis．
SC：Self－standing cable specification
CT：Cable track specification
＊Depending on the model，sometimes only either SC or CT can be specified．Please refer to each model specification page for details．

© Third axis details

Indicate the stroke and options of the third axis in the 3－axis configuration． The same holds for others．

© Cable length

Indicates the length of the motor／encoder cable connecting the actuator and the controller．
As standard lengths， $3 \mathrm{~L}(3 \mathrm{~m})$ or $5 \mathrm{~L}(5 \mathrm{~m})$ can be selected．
Or custom length can be specified up to 20 m ．

（1）Cable wiring between axes 2－3

Indicates the method of cable wiring from the second axis to the third axis．
SC：Self－standing cable specification
CT：Cable track specification
CTSC：Cable track＋self－standing cable
＊As a general rule，the cable wiring between axes 2－3 is carried out using the same method as for wiring between axes 1－2．
＊CTSC is restricted to G1J \square HS $\square \square$ ，G2J \square HS $\square \square$ ．
＊Depending on the model，sometimes only either SC or CT can be specified．Please refer to each model specification page for details．
＜Z3 $\square \square \mathrm{HS} \square \mathrm{H} / \mathrm{G} \square \square \square \mathrm{B} \square \square / \mathrm{G} \square \square \square \mathrm{S} \square \square>$

Z3CDHS1H	XZ（medium model＋medium model）high－speed type +Y －axis（small model）slider mount	GBCHB1］	XYBG（medium model＋small model）high－speed type ＋Z－axis（small model）base mount	GBロHS1ロ	XYBG（medium model＋small model）high－speed type +Z －axis（small model）slider mount
Z3GロHS2H	XZ（large model＋large model）high－speed type +Y －axis（medium model）slider mount	GBロMB1ロ	XYBG（medium model＋small model）medium－speed type $+Z$－axis（small model）base mount	GBロMS1ロ	XYBG（medium model＋small model）medium－speed type + Zaxis（small model）slider mount
G1JロHB1ロ	XYG（large model＋medium model）high－speed long type +Z －axis（small model）base mount	GCDHB1ロ	XYBG（medium model＋medium model）high－speed type +Z －axis（small model）base mount	GCロHS1］	XYBG（medium model + medium model）high－speed type $+Z$－axis（small model slider mount
G1JПHB2■	XYG（large model＋medium model）high－speed long type + Z－axis（medium model 100W）base mount	GC■HB2■	XYBG（medium model＋medium model）high－speed type +Z －axis（medium model 100 W ）base mount	GC■HS3 \square	XYBG（medium model＋medium model）high－speed type +Z －axis（medium model 200W）slider mount
G1JПHB3 \square	XYG（large model＋medium model）high－speed long type + Z－axis（medium model 200W）base mount	GCDHB3口	XYBG（medium model＋medium model）high－speed type + Z－axis（medium model 200W）base mount	GC■MS1■	XYBG（medium model＋medium model）medium－speed type + Z－axis（small model）slider mount
G2JロHB1ロ	XYG（large model＋medium model）high－speed long type +Z －axis（small model）base mount	GC■MB2■	XYBG（medium model＋medium model）medium－speed type + Z－axis（medium model 100W）base mount	GC■MS3 \square	XYBG（medium model＋medium model）medium－speed type +Z －axis（medium model 200W）slider mount
G2J \square HB2 \square	XYG（large model＋medium model）high－speed long type +Z －axis（medium model 100W）base mount	GCDMB3 \square	XYBG（medium model＋medium model）medium－speed type +Z axis（medium model 200 W ）base mount	GDDHS1］	XYBG（medium model＋medium model）high－speed long type $+Z$－axis（small model）slider mount + Z－axis（small model）slider mount
G2J■HB3 \square	XYG（large model＋medium model）high－speed long type ＋Z－axis（medium model 200W）base mount	GDDHB1］	XYBG（medium model＋medium model）high－speed long type ＋Z－axis（small model）base mount	GDDHS3 \square	XYBG（medium model＋medium model）high－speed long type ＋Z－axis（medium model 200W）slider mount
G1JПHS1■	XYG（large model＋medium model）high－speed long type +Z －axis（small model）slider mount	GDロHB2■	XYBG（medium model＋medium model）high－speed long type +Z －axis（medium model 100W）base mount	GEDHS1］	XYBG（large model＋medium model）high－speed type + Z－axis（small model）slider mount
G1JПHS2 \square	XYG（large model＋medium model）high－speed long type $+Z$－axis（medium model 100 W ）slider mount	GDIHB3	XYBG（medium model＋medium model）high－speed long type +Z －axis（medium model 200W）base mount	GEDHS3口	XYBG（large model＋medium model）high－speed type +Z －axis（medium model 200 W ）slider mount
G1JПH53 \square	XYG（large model＋medium model）ligh－speed long type + Z－axis（medium model 200W）slider mount	GEDHB1］	XYBG（large model＋medium model）high－speed type ＋Z－axis（small model）base mount	GEDMS1］	XYBG（large model＋medium model）medium－speed type +Z －axis（small model）slider mount
G2JロHS1■	XYG（large model＋medium model）high－speed long type +Z －axis（small model）slider mount	GEDHB2■	XYBG（large model＋medium model）high－speed type +Z －axis（medium model 100 W ）base mount	GE■M53 \square	XYBG（large model＋medium model）medium－speed type +Z －axis（medium model 200W）slider mount
G2J■HS2■	XYG（large model＋medium model）high－speed long type $+Z$－axis（medium model 100W）slider mount	GEDHB3口	XYBG（large model＋medium model）high－speed type + Z－axis（medium model 200W）base mount	GFDHS1］	XYBG（large model＋medium model）high－speed long type + Z－axis（small model）slider mount
G2J■H53 \square	XYG（large model＋medium model）high－speed long type + Z－axis（medium model 200 W ）slider mount	GFロHB1 \square	XYBG（large model＋medium model）high－speed long type +Z －axis（small model）base mount	GF■HS3 \square	XYBG（large model＋medium model）high－speed long type +Z －axis（medium model 200W）slider mount
		GFロHB2 \square	XYBG（large model＋medium model）high－speed long type $+Z$－axis（medium model 100 W ）base mount		
		GFロHB3口	XYBG（large model＋medium model）high－speed long type +Z －axis（medium model 200W）base mount		
					Model Specification Iteŵ

