RCA/RCA2/RCL Positioner Controller AUONEOA RCD Positioner Controller DCON-CA

Smart \& Small
 High functionality and performance is packed in a space-saving, compact body

Shorter cycle time and greater ease of use achieved by new functions

The offboard tuning function lets you set an optimal gain for the load. Furthermore, the simple absolute function has been extended to support the absolute encoders of the RCA series.

Function	ACON-CA	DCON-CA
Offboard tuning function	\bigcirc	-
Absolute encoder support	\bigcirc	-
Simple absolute function	\bigcirc	-
Vibration damping control function	\bigcirc	-
Servo monitor function	\bigcirc	\bigcirc
Maintenance function (see below)	\bigcirc	\bigcirc
Calendar function (see below)	\bigcirc	\bigcirc

DCON-CA

Micro cylinder capable of multi-point positioning to 512 positions

The ultra-compact micro cylinder is tiny enough to replace a small air cylinder and supports up to 512 positioning points. Advanced position settings are possible for transfer, pushmotion and up/down applications.

ACON-CA DCON-CA

Maintenance timings can be checked using the traveled distance calculation function

The total distance travelled by the actuator is calculated and recorded in the controller, and if the preset distance is exceeded, a signal is output from the controller.
This function can be used to check when to add grease or perform the next periodic inspection.

ACON-CA DCON-CA

Alarm timestamps can be retained by the calendar function

The built-in calendar function (clock function) records alarms and other events with timestamps, which helps analyze the causes of troubles should they occur.
"Maintenance/inspection timing notification function" will help you.

A signal is automatically output to the PLC when the preset maintenance/inspection timing (number of operations or distance travelled) is reached.

IMECHATROUNK
(*) Mechatrolink w/o CE conformity yet.

List of Models

								Field netw	work type	(*) M	echatrolink w/o CE	Econformity yet.
			PIO	Pulse-train	DeviceNet	CC-Link		CompoNet	Wmechatrounk	Ether $\mathbf{C A T}{ }^{\text {\% }}$ -	EtherNet/IPD	PROOFO°
					DeviceNet connection specification	CC-Link connection specification	PROFIBUS-DP connection specification	CompoNet connection specification	Mechatrolink connection specification (*)	EtherCAT connection specification	EtherNet/IP connection specification	PROFINET-IO connection specification
I/O	ype mode	l number	NP/PN	PLN/PLP	DV	CC	PR	CN	ML	EC	EP	PRT
	Incremen	tal specification	\bigcirc									
		With absolute battery ("AB")	\bigcirc	-	\bigcirc							
ACON-CA	absolute specifi-	With absolute battery unit ("ABU")	\bigcirc	-	\bigcirc							
	cation	No absolute battery ("ABUN")	\bigcirc	-	\bigcirc							
	Absolut	e specification	\bigcirc	-	\bigcirc							
DCON-CA	Incremen	tal specification	\bigcirc									

(Note) The simple absolute specification controllers can operate RCA or RCA2 series incremental specification actuators similar to absolute specification actuators. The absolute specification controller can operate RCA series absolute specification actuators.

Model Number

ACON Configuration

If the RCA/RCA2 actuator is operated with the ACON-CA, specify "A5" as the applicable controller for the RCA/RCA2.
$\underset{\text { Series }}{\mathbf{R C A}(2)}-\underset{\text { Sype }}{\text { SA5C }}-\underset{\text { Encoder }}{\mathbf{I}}-\underset{\text { Motor }}{20}-\underset{\text { Lead }}{12}-\underset{\text { Stroke }}{\mathbf{5 0 0}} \underset{\text { Applicable controller }}{-} \mathbf{A 5}-\underset{\text { Cable length }}{\mathbf{A}}$

DCON Configuration

When the actuator RCD is moved by DCON-CA, the call-out for the applicable controller of RCD is "D5".

RCD	RA1D	I	3	2	10	D	M
Series	Type	Encoder	Motor	Lead	Stroke	Applicable controller	Cable length

Sold \& Serviced By:

ELECTROMATE

Input Part External Input Specifications

Item	Specification
Input voltage	$24 \mathrm{VDC} \pm 10 \%$
Input current	$5 \mathrm{~mA}, 1$ circuit
ON/OFF voltage	ON voltage: 18 VDC min. OFF voltage: 6 VDC max.

Output Part External Output Specifications

Item	Specification
Load voltage	24 VDC
Maximum load current	$50 \mathrm{~mA}, 1$ circuit
Leak current	2 mA max. per point

Types of PIO Patterns (Control Patterns) (Common to ACON-CA/DCON-CA)

This controller supports seven types of control methods. Select in Parameter No. 25, "PIO pattern selection" the PIO pattern that best suits your purpose of use.

Type	Set value of Parameter No. 25	Mode	Overview
PIO pattern 0	0 (factory setting)	Positioning mode (standard type)	- Number of positioning points: 64 points - Position number command: Binary Coded - Zone signal output*': 1 point - Position zone signal output*2: 1 point
PIO pattern 1	1	Teaching mode (teaching type)	- Number of positioning points: 64 points - Position number command: Binary Coded - Position zone signal output**: 1 point • Jog (inching) operation using PIO signals is supported. - Current position data can be written to the position table using PIO signals.
PIO pattern 2	2	256-point mode (256 positioning points)	- Number of positioning points: 256 points - Position number command: Binary Coded - Position zone signal output*2: 1 point
PIO pattern 3	3	512-point mode (512 positioning points)	- Number of positioning points: 512 points - Position number command: Binary Coded - No zone signal output
PIO pattern 4	4	Solenoid valve mode 1 (7-point type)	- Number of positioning points: 7 points - Position number command: Individual number signal ON - Zone signal output**: 1 point - Position zone signal output**: 1 point
PIO pattern 5	5	Solenoid valve mode 2 (3-point type)	- Number of positioning points: 3 points - Position number command: Individual number signal ON - Completion signal: A signal equivalent to a LS (limit switch) signal can be output. - Zone signal output**: 1 point - Position zone signal output**: 1 point
PIO pattern 6 (Note)	6	Pulse-train control mode	- Differential pulse input (200 kpps max.) - Home return function - Zone signal output*1: 2 points - No feedback pulse output

*1 Zone signal output: A desired zone is set by Parameter Nos. 1 and 2 or 23 and 24, and the set zone always remains effective once home return has completed.
*2 Position zone signal output:This function is available as part of a position number. A desired zone is set in the position table and
becomes effective only when the corresponding position is specified, but not with commands specifying other positions.
(Note) Pulse Train Control Model is available only if the pulse train control type is indicated (from ACON/DCON-CA-*-PLN and -PLP) at the time of purchase.

The table below lists the signal assignments for the I/O flat cable under different PIO patterns. Connect an external device (such as a PLC) according to this table.

Pin number	Category	PIO function	Parameter No. 25, "PIO pattern selection"					
			0	1	2	3	4	5
			Positioning mode	Teaching mode	256-point mode	512-point mode	Solenoid valve mode 1	Solenoid valve mode 2
	Input	Number of positioning points	64 points	64 points	256 points	512 points	7 points	3 points
		Home return signal	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
		Jog signal	-	\bigcirc	-	-	-	-
		Teaching signal (writing of current position)	-	\bigcirc	-	-	-	-
		Brake release	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Output	Moving signal	\bigcirc	\bigcirc	-	-	-	-
		Zone signal	\bigcirc	\triangle (Note 1)	\triangle (Note 1)	-	\bigcirc	\bigcirc
		Position zone signal	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
1A	24 V	P24						
2A	24 V	P24						
3A	Pulse input	-						
4A		-						
5A	Input	INO	PC1	PC1	PC1	PC1	STO	STO
6A		IN1	PC2	PC2	PC2	PC2	ST1	ST1(JOG+)
7A		IN2	PC4	PC4	PC4	PC4	ST2	ST2 (Note 2)
8A		IN3	PC8	PC8	PC8	PC8	ST3	-
9A		IN4	PC16	PC16	PC16	PC16	ST4	-
10A		IN5	PC32	PC32	PC32	PC32	ST5	-
11A		IN6	-	MODE	PC64	PC64	ST6	-
12A		IN7	-	JISL	PC128	PC128	-	-
13A		IN8	-	JOG+	-	PC256	-	-
14A		IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL
15A		IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD
16A		IN11	HOME	HOME	HOME	HOME	HOME	-
17A		IN12	*STP	*STP	*STP	*STP	*STP	-
18A		IN13	CSTR	CSTR/PWRT	CSTR	CSTR	-	-
19A		IN14	RES	RES	RES	RES	RES	RES
20A		IN15	SON	SON	SON	SON	SON	SON
1B	Output	OUTO	PM1(ALM1)	PM1 (ALM1)	PM1(ALM1)	PM1 (ALM1)	PEO	LSO
2B		OUT1	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PE1	LS1(TRQS)
3B		OUT2	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PE2	LS2 (Note 2)
4B		OUT3	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PE3	-
5B		OUT4	PM16	PM16	PM16	PM16	PE4	-
6B		OUT5	PM32	PM32	PM32	PM32	PE5	-
7 B		OUT6	MOVE	MOVE	PM64	PM64	PE6	-
8B		OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1
9B		OUT8 (Note 1)	PZONE/ZONE2	PZONE/ZONE1	PZONE/ZONE1	PM256	PZONE/ZONE2	PZONE/ZONE2
10B		OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS
11B		OUT10	HEND	HEND	HEND	HEND	HEND	HEND
12B		OUT11	PEND	PEND/WEND	PEND	PEND	PEND	-
13B		OUT12	SV	SV	SV	SV	SV	SV
14B		OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS
15B		OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM
16B		OUT15	*BALM (Note 3)/*ALML	*BALM (Note 3)/*ALML	*BALM (Note 3)**ALML	*BALM (Note 3)**ALML	*BALM (Note 3)**ALML	*BALM (Note 3)**ALML
17B	Pulse input	-						
18B		-						
19B	OV	N						
20B	OV	N						

(Note) In the table above, asterisk * symbol accompanying each code indicates a negative logic signal. PM1 to PM8 are alarm binary code output signals that are used when an alarm generates. (Note 1) In all PIO patterns other than 3, this signal can be switched with PZONE by setting Parameter No. 149 accordingly.
(Note 2) The setting will not become effective until the origin return is completed.
(Note 3) This signal is dedicated only for ACON-CA.
Reference) Negative logic signal
Signals denoted by * are negative logic signals. Negative logic input signals are processed when turned OFF. Negative logic output signals normally remain ON while the power is supplied, and turn OFF when the signal is output.
Note: The names of the signals above inside () are functions before the unit returns home.

5

Sold \& Serviced By:

■ Host Unit = Differential Type

- Host Unit = Open Collector Type The AK-04 (optional) is needed to input pulses.

Pulse Converter: AK-04

Open-collector command pulses are converted to differential command pulses.
Use this converter if the host controller outputs open-collector pulses.

- Specification

Item	Specification
Input power	24 VDC $\pm 10 \%$ (max. 50 mA)
Input pulse	Open-collector (Collector current: max. 12mA)
Input frequency	200 kHz or less
Output pulse	Differential output (max. 10mA) (26C31 or equiv.)
Mass	10 g or less (excluding cable connectors)
Accessories	$37104-3122-000 \mathrm{~L}$ (e-CON connector) x 2 Applic. wire: AWG No. 24~26

Caution: Use the same power supply for open collector input/output to/from the host and for the AK-04.

Command Pulse Input Patterns

	Command pulse-train pattern	Input terminal	Forward	Reverse
Negative logic	Forward pulse-train	PP./PP	$\downarrow \square \square \square$	
	Reverse pulse-train	NP./NP		
	A forward pulse-train indicates the amount of motor rotation in the forward direction, while a reverse pulse-train indicates the amount of motor rotation in the reverse direction.			
	Pulse-train	PP./PP	$\downarrow \square \square$	$\downarrow \square \square \square \square$
	Sign	NP./NP	Low	High
	The command pulses indicate the amount of motor rotation, while the sign indicates the rotating direction.			
	Phase A/B pulse-train	PP./PP		$\nabla \star \stackrel{\square}{ }$
		NP./NP	$\star \stackrel{\wedge}{\star}$	$\downarrow \star$
	Command phases A and B having a 90° phase difference (multiplier is 4) indicate the amount of rotation and the rotating direction.			
Positive logic	Forward pulse train	PP./PP	44	
	Reverse pulse-train	NP./NP		
	Pulse-train	PP./PP		
	Sign	NP./NP	High	Low
	Phase A/B pulse-train	PP./PP	$4 *$	$4 \pm$
		NP./NP	$4 \vee$	$\star \forall$

The table below lists the signal assignments for the flat cable in the pulse-train control mode. Connect an external device (such as PLC) according to this table.

Pin number	Category	I/O number	Signal abbreviation	Signal name	Function description

(Note) * indicates a negative logic signal. Negative logic signals are normally ON while the power is supplied, and turn OFF when the signal is output.

7

Sold \& Serviced By

If the ACON-CA/DCON-CA is controlled via a field network, you can select one of the following five modes to operate the actuator.

Take note that the required data areas on the PLC side vary depending on the mode.

■ Explanation of Modes

	Mode	Description
0	Remote I/O mode	In this mode, the actuator is operated by controlling the ON/OFF of bits via the network, just like with the PIO specification. The number of positioning points and functions vary with each of the operation patterns (PIO patterns) that can be set by the controller's parameter.
1	Position/simple direct numerical mode	The target position is specified by directly entering a value, while other operating conditions (speed, acceleration, etc.) are set by specifying the desired position number corresponding to the desired operating conditions already input to the position data table.
2	Half direct numerical mode	The actuator is operated by specifying the speed, acceleration/deceleration and push current, in addition to the target position, by directly entering values.
3	Full direct numerical mode	The actuator is operated by specifying the target position, speed, acceleration/deceleration, push current control value, etc., by directly entering values. The current position, current speed, command current, etc., can also be read.
4	Remote I/O mode 2	Same as the above remote I/O mode, plus the current position read function and command current read function.

■ Required Data Size for Each Network

		DeviceNet	CC-Link	PROFIBUS-DP	CompoNet	MECHATROLINK (*)	EtherCAT	EtherNet/IP	PROFINET
0	Remote I/O mode	1 CH	1 station	2 bytes	2 bytes	a	2 bytes	2 bytes	2 bytes
1	Position/simple direct numerical mode	4 CH	1 station	8 bytes	8 bytes	a	8 bytes	8 bytes	8 bytes
2	Half direct numerical mode	8 CH	2 stations	16 bytes	16 bytes	a	16 bytes	16 bytes	16 bytes
3	Full direct numerical mode	16 CH	4 stations	32 bytes	32 bytes	a	32 bytes	32 bytes	32 bytes
4	Remote I/O mode 2	6 CH	1 station	12 bytes	12 bytes	a	12 bytes	12 bytes	12 bytes

* " a " indicates that no required data size is set for MECHATROLINK I and II.
- List of Functions by Operation Mode

	Remote I/O mode	Position/simple direct numerical mode	Half direct numerical mode	Full direct numerical mode	Remote I/O mode 2
Number of positioning points	512 points	768 points	Not limited	Not limited	512 points
Operation by direct position data specification	-	\bigcirc	\bigcirc	\bigcirc	-
Direct speed/acceleration specification	-	-	\bigcirc	\bigcirc	-
Push-motion operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
Current position read	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Current speed read	-	-	\bigcirc	\bigcirc	-
Operation by position number specification	\bigcirc	\bigcirc	-	-	\bigcirc
Completed position number read	\bigcirc	\bigcirc	-	-	\bigcirc

* " O " indicates that the operation is supported, and "-" indicates that it is not supported.

External Dimensions (Common to ACON-CA/DCON-CA)

Simple absolute specification with absolute battery unit	Screw fastening specification

Specification Table

■ Motor power capacity

		Motor type	Standard/-High-acceleration		Power-saving		
		Rated [A]	Max. [A]	Rated [A]	Max. [A]		
ACON-CA	RCA/RCA2		10W	1.3	4.4	1.3	2.5
		20W	1.3	4.4	1.3	2.5	
		30W	1.3	4	1.3	2.2	
		20W(20S)	1.7	5.1	1.7	3.4	
	RCL (w/o CE conformity yet)	2W	0.8	4.6	-	-	
		5W	1	6.4	-	-	
		10W	1.3	6.4	-	-	
DCON-CA	RCD	3W	0.7	1.5	-	-	

Sold \& Serviced By
ELECTROMATE

Option (Common to ACON-CA/DCON-CA)

Teaching pendant

- Summary A teaching device that has position input, test operation, monitoring function, etc.
- Model

TB-01-

- Setting

\boxtimes Specifications

Rated voltage	24 VDC
Power consumption	3.6 W or less (150 mA or less)
Ambient operating temperature	0 to $50^{\circ} \mathrm{C}$
Ambient operating humidity	20 to $85 \% \mathrm{RH}$ (Non-condensing)
Environmental resistance	IP40 (initial state)
Weight	507 g (TB-01 only)

- Types This teaching pendant supports all of the controllers listed below, but the cable(s) must be selected according to each controller. Model kit: teaching pendant + cable set (model number of teaching pendant: TB-01-N-ENG)

Model kit	Supplied cable	Applicable controller
TB-01-SC-ENG	Position controller cable	Position controller
	Program controller cable + conversion cable	PSEL, ASEL, SSEL, XSEL-K/P/Q/R/S, TT, TTA
TB-01-C-ENG	Position controller cable	Position controller

PC software (Windows only)

- Summary A startup support software for inputting positions, performing test runs, and monitoring. With enhancements for adjustment functions, the startup time is shortened.

Absolute Battery Unit

- Summary Battery unit that comes with a simple absolute controller, used to back up the current controller position.
- Model SEP-ABU (DIN rail mounting specification)

SEP-ABUS (screw fastening specification)

- Specificatons

Item	SEP-ABU / SEP-ABUS
Operating ambient temperature, humidity	0 to $40^{\circ} \mathrm{C}$ (desirably around $20^{\circ} \mathrm{C}$), 95% RH or below (non-condensing)
Operating ambience	Free from corrosive gases
Absolute battery	Model: AB-7 (Ni-MH battery / Life: ca. 3 years)
Controller / absolute battery unit link cable	Model: CB-APSEP-AB005 (Length: 0.5 m$)$
Mass	Battery box: 140 g or less Battery: 140 g or less

- External Dimensions (Refer to P.9)

Replacement battery (simple absolute specification)

- Summary

The replacement battery for the simple absolute specification type

- Absolute data retention time Up to 20 days
- Model

AB-7

Replacement battery (standard absolute specification)

- Summary

The replacement battery for the standard absolute specification type

- Absolute data retention time Up to 2 years
1 Model AB-5

Maintenance parts

Integrated Motor-Encoder Robot Cable for [RCA]-[ACON-CA] Connection

Model CB-ASEP2-MPA $\square \square$

* The default specification of this cable is robot cable.
* Please indicate cable length (L) in $\square \square \square$ maximum 20 m . Example: $080=8 \mathrm{~m}$

Integrated Motor-Encoder Robot Cable for [RCA2/RCL]-[ACON-CA] Connection
model CB-APSEP-MPA $\square \square \square$

* The default specification of this cable is robot cable.
* Please indicate cable length (L) in $\square \square \square$ maximum 20 m . Example: $080=8 \mathrm{~m}$

Integrated Motor-Encoder Cable / Integrated Motor-Encoder Robot Cable for [RCD]-[DCON-CA] Connection

model CB-CAN-MPA $\square \square \square /$ CB-CAN-MPA $\square \square \square$-RB

(Note 1) If the cable length is 5 m or more, the diameter of the non-robot cable becomes $\varnothing 9.1$, while that of the robot cable becomes $\varnothing 10$.

I/O Flat Cable

Model CB-PAC-PIO $\square \square \square$

HIF6-40D-1.27R							
No.	$\begin{array}{\|l\|l\|} \hline \text { Signal } \\ \text { name } \end{array}$	$\begin{aligned} & \text { Cable } \\ & \text { color } \end{aligned}$	Wiring	No.	$\begin{aligned} & \text { Signal } \\ & \text { name } \end{aligned}$	$\begin{aligned} & \text { Cable } \\ & \text { color } \end{aligned}$	Wiring
1A	24 V	Brown-1	Flat cable (A) (crimped)	1B	OUTO	Brown-3	$\begin{gathered} \text { Flat cable (B) } \\ \text { (Crimped) } \\ \text { AWG 28 } \end{gathered}$
2A	24 V	Red-1		2B	OUT1	Red-3	
3A	Pulse input	Orange-1		3B	OUT2	Orange-3	
4A		Yellow-1		4B	OUT3	Yellow-3	
5A	INO	Green-1		5 B	OUT4	Green-3	
6A	IN1	Blue-1		6B	OUT5	Blue-3	
7A	IN2	Purple-1		78	OUT6	Purple-3	
8A	IN3	Gray-1		8B	OUT7	Gray-3	
9A	IN4	White-1		9 B	OUT8	White-3	
10A	IN5	Black-1		10B	OUT9	Black-3	
11A	IN6	Brown-2		118	OUT10	Brown-4	
12A	IN7	Red-2		12B	OUT11	Red-4	
13A	IN8	Orange-2		13B	OUT12	Orange-4	
14A	IN9	Yellow-2		14B	OUT13	Yellow-4	
15A	IN10	Green-2		15B	OUT14	Green-4	
16A	IN11	Blue-2		16B	OUT15	Blue-4	
17A	IN12	Purple-2		17B	Pulse	Purple-4	
18A	IN13	Gray-2		18B	input	Gray-4	
19A	IN14	White-2		19B	OV	White-4	
20A	IN15	Black-2		20B	OV	Black-4	

Sold \& Serviced By:

ELECTROMATE

