Dynatec ${ }^{\circledR}$ Controls

Description

Dynacorp ${ }^{\circledR}$ offers a wide range of clutch/brake controls, which are used throughout the manufacturing and processing industries. These controls employ modern solid-state technology to provide optimum clutch/brake performance and ease of installation.

Section Index

Control Functions and Benefits \qquad See Chart Below

Products Complete information is shown for each product, including: a description of functions/features, specifications, dimensions, and part numbers for ordering

* Warner ${ }^{\oplus}$ Interchange

Dynatec ${ }^{\circledR}$ Series Selection Guide

Model	Input Voltage AC	Channel 1 Output Voltage DC	Channel 2 Output Voltage DC	Maximum Current	Contact Cold Switching	Status LED's	Optoisolated DC Switching	AntiOverlap	Torque Adjust	Overexcite	Soft Start Soft Stop	Page No.
D2950	115	90	90	1A	\bullet	\bullet	\bullet	\bullet		-		K-2
D2750	115	90	90	1A	\bullet	\bullet	\bullet	\bullet			\bullet	K-4
D2550	115	90	90	1A	\bullet	\bullet	\bullet	\bullet				K-6
D2100	115	90	90	2A	-	-						K-8
D2110	230	90	90	2A	-	-						K-8
D2101*	115	90	90	2A	\bullet	-						K-10
D2111*	230	90	90	2A	-	-						K-10
D2650	115	0-90 adi	$0-90$ adi	1A	\bullet	\bullet		\bullet	\bullet	Sold \&	iced By	K-12

[^0]
Dynatec ${ }^{\circledR}$ Controls

Dynatec ${ }^{\circledR} 2950$ Control

Dual Channel Overexcite Clutch/Brake Control

Description

The Dynatec ${ }^{\circledR} 2950$ (D2950) is a solid-state digital Overexcite (OE) clutch/brake controller, designed to operate 90 VDC clutch/ brake (C/B) coils with current loads of up to 1.0 amp ; Din rail mounting for ease of installation.
This controller operates one or two C/B coils with an adjustable anti-overlap circuit and OE.
The D2950 incorporates voltage protection on the AC input. When transient voltage spikes or notching is present on AC lines, an isolation transformer is required to filter the incoming power to the D2950.

Specifications

Power Input

Voltage:	115 VAC
Current:	1.5 amp
Frequency:	$50 / 60 \mathrm{~Hz}$
Fusing:	Customer-supplied 2 amp

Power Output
Voltage: $\quad 90$ VDC (105 V actual)
Overexcite Pulse: 325 VDC
Current: 1.0 Max.
D2950 Dimensions
Weight: $\quad 17 \mathrm{Oz}$.
Overall: $\quad 3.94^{\prime \prime}$ W. $\times 2.76^{\prime \prime} \mathrm{H} . \times 5.28^{\prime \prime} \mathrm{D}$.
Mounting: Din rail
Temperature
Operating: $\quad 0^{\circ}$ to $65^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$

Features

- Meets 51 Certification
- Adjustable clutch/brake "on" delay Anti-overlap potentiometer 0 to 100 ms
- Status/Diagnostic lights: Clutch On Brake On
- Selective input switching logic Cold contact, 3-30 VDC or 115 VAC
- Outputs (2) 1 amp Max load
- Use with all Dynacorp ${ }^{\circledR} 90 \mathrm{~V}$ products, except $308 \mathrm{HQ}, 310 \mathrm{HQ}$, and 312 HQ models.

Input Logic	Part No.
$115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	$214277-040-2211$
$3-30 \mathrm{VDC}$	$214277-040-2212$
Contact Closure	$214277-040-2213$

D2950 Overexcite

Overexcite produces a 270 VDC spike to the clutch or brake. This graph displays RPM curve of clutch brake package with No Overexcite.

The Dynatec ${ }^{\circledR} 2950$ incorporates an Overexcite feature. The results of Overexcite are displayed in the graph. The clutch and brake coils are saturated much faster, allowing for quick positive engagement, producing higher start/stop accuracy, while reducing friction heat.

D2950 Anti-Overlap

When using conventional controls where the output voltage is switched by a relay contact, overlap occurs when you see the arching across the contacts. This indicates that just for an instant the brake and clutch are both engaged. This graph represents overlap. The effect of this is excessive wear and heat to the clutch/brake system.

Clutch/Brake Shaft RPM Curve using Conventional Control

Clutch/Brake Shaft RPM Curve using Dynacorp® Control with Overexcite

Clutch/Brake Shaft RPM Curve using Conventional Control

Clutch/Brake Shaft RPM Curve using Dynacorp® Control with Anti-Overlap

The Dynatec ${ }^{\circledR} 2950$ incorporates MOV's and an adjustable time delay logic that will prevent the effects of overlap. This graph illustrates the effects of anti-overlap. Notice the difference between the RPM curves. You have a shorter time to speed and time to zero, and the switching is more precise, creating less heat. These controls can actually operate the clutch/brake system at higher cycle rates, with better repeatability and less heat than conventional controls.

D2950 Wiring Information

Dynacorp® Clutch/Brake Package Wiring

Single Clutch and Brake Wiring

Dynatec ${ }^{\circledR}$ Controls

Dynatec ${ }^{\circledR} 2750$ Control

Accel/Decel Dual Channel Clutch/Brake Control

Specifications

Power Input

Voltage	115 VAC
Current	1.5 amp
Frequency	$50 / 60 \mathrm{HZ}$
Fusing	Customer-supplied 2 amp
er Output	
Voltage	0.90 VDC
Current	1.0 amp Max.

D2750 with Subpanel Dimensions
Weight 18 oz .
Overall $\quad 2.76^{\prime \prime} \mathrm{H} . \times 3.94^{\prime \prime} \mathrm{H} . \times 5.28^{\prime \prime} \mathrm{D}$.
Temperature
Operating: $\quad 0^{\circ}$ to $65^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$

Description

The Dynatec ${ }^{\circledR} 2750$ (D2750) is a solid-state, digitally designed accel/decel clutch/brake controller, engineered to precisely operate 90 VDC clutch/brake (C/B) coils with current loads of up to 1.0 amp and din rail mounting for ease of installation.

This controller operates one or two coils, incorporating an anti-overlap circuit.
The D2750 controller employs technology to ensure long life and reliable service: The D2750 incorporates voltage protection on the AC input. When transient voltage spikes or notching is present on AC lines, an isolation transformer is required to filter the incoming power to the D2750.

Features

- Meets CII Certification
- Soft-Start and Soft-Stop (Ramps output from 0-2 seconds)
- Anti-Overlap Circuit
- 115 VAC Input
- Selective Input Switching Logic Contact or Opto-Isolated 3-30 VDC or 115 VAC
- Status/Diagnostic lights:

Clutch On
Brake On

Input Logic	Part No.
$115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	$214257-040-2230$
$3-30 \mathrm{VDC}$	$214257-040-2231$
Contact Closure	$214257-040-2232$

D2750 Anti-Overlap

When using conventional controls where the output voltage is switched by a relay contact, overlap occurs when you see the arching across the contacts. This indicates that just for an instant the brake and clutch are both engaged. This graph represents overlap. The effect of this is excessive wear and heat to the clutch/brake system.

The Dynatec ${ }^{\circledR} 2750$ incorporates MOV's and time delay logic that will prevent the effects of overlap. This graph illustrates the effects of anti-overlap. Notice the difference between the RPM curves. You have a shorter time to speed and time to zero, and the switching is more precise, creating less heat. These controls can actually operate the clutch/brake system at higher cycle rates, with better repeatability and less heat than conventional controls.

Clutch/Brake Shaft RPM Curve using Conventional Control

Clutch/Brake Shaft RPM Curve using Dynacorp® Control with Anti-Overlap

D2750 Soft-Start/Soft-Stop

This feature is used to cushion the engagement of the clutch and brake by ramping the voltage. This graph displays the RPM curve of a clutch brake package with No Soft-Start/Soft-Stop.

The Dynatec ${ }^{\circledR} 2750$ incorporates a Soft-Start/Soft-Stop feature. This illustration displays the voltage ramping up and ramping down. The ramp time is adjustable by turning the Soft-Start potentiometer for clutch and Soft-Stop for brake and can be adjusted from 0 to 2 seconds, which is the elapsed time from 0 to 90 VDC. There are several factors that are taken into consideration when using this feature: Inertia, Cycle Rate, RPM and Load Torque.
Adjust the clutch or brake potentiometer to the desired ramp time.

Clutch/Brake Shaft RPM Curve using Conventional Control

Clutch/Brake Shaft RPM Curve using a Dynacorp® Control with Soft-Start and Soft-Stop

D2750 Wiring Information

Dynacorp® Clutch/Brake Package Wiring

Single Clutch and Brake Wiring

Sold \& Serviced By:
es Electromate
Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.corn-5 sales@electromate.com

Dynatec ${ }^{\circledR}$ Controls

Dynatec ${ }^{\circledR} 2550$ Control

Dual Channel Anti-Overlap Clutch/Brake Control

Description:

The Dynatec ${ }^{\circledR} 2550$ (D2550) is a solid-state anti-overlap clutch/ brake controller, engineered to operate 90 VDC clutch/brake (C/B) coils with current loads up to 1.0 amp ; Din rail mounting for ease of installation.
This controller operates one or two coils, incorporating an anti-overlap circuit.
The D2550 incorporates voltage protection on the AC input. When transient voltage spikes or notching is present on AC lines, an isolation transformer is required to filter the incoming power to the D2550.

Specifications

Power Input
Voltage
115 VAC
Current
Frequency
Fusing
Power Output
Voltage
Current $\quad 1.0$ amp Max.
D2550 with Sub-Panel Dimensions
Weight
15 oz.
Overall
Temperature
Operating $\quad 0^{\circ}$ to $65^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$

Features:

- Meets CII Certification
- Anti-Overlap Circuit
- 115 VAC Input
- Selective Input Switching Logic Cold Contact or Opto-Isolated 3-30 VDC or 115 VAC
- Status/Diagnostic lights:

Clutch On Brake On

Input Logic	Part No.
$115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	$214247-040-2201$
$3-30 \mathrm{VDC}$	$214247-040-2202$
Contact Closure	$214247-040-2203$

D2550 Anti-Overlap

When using conventional controls where the output voltage is switched by a relay contact, overlap occurs when you see the arching across the contacts. This indicates that just for an instant the brake and clutch are both engaged. This graph represents overlap. The effect of this is excessive wear and heat to the clutch/brake system.

Clutch/Brake Shaft RPM Curve using Conventional Control

Clutch/Brake Shaft RPM Curve using Dynacorp® Control with Anti-Overlap

The Dynatec ${ }^{\circledR} 2550$ incorporates MOV's and time delay logic that will prevent the effects of overlap. This graph illustrates the effects of anti-overlap. Notice the difference between the RPM curves. You have a shorter time to speed and time to zero, and the switching is more precise, creating less heat. These controls can actually operate the clutch/brake system at higher cycle rates with better repeatability and less heat than conventional controls.

D2550 Wiring Information

Wiring example for logic input 115 VAC

Wiring example for logic input 3-32 VDC

Wiring example for contact closures

Dynacorp® Clutch/Brake Package Wiring

Single Clutch and Brake Wiriod \& Serviced By:

Dynatec ${ }^{\circledR}$ Controls

Dynatec ${ }^{\circledR}$ D2100 and D2110

Plug-in Clutch/Brake Controls

Dynacorp® D2100 Control Part\# 214215 (115 VAC Input) Dynacorp ${ }^{\circledR}$ D2110 Control Part\# 224215 (230 VAC Input)

Description:

The Dynatec ${ }^{\circledR} 2100$ (D2100) and 2110 (D2110), are plug-in controls, designed to mount into an eight pin octo-socket. The D2100 and the D21 10 are engineered to operate a 90 V DC clutch and/or brake coil with current loads up to 2.0 amps . The compact plug-in design allows for ease of installation and replacement.
The D2100 and D21 10 are fused on both input power lines to protect the controller system. These controls incorporate voltage protection on the AC input to suppress transient spikes, present on some power lines.

Specifications:

Model D2100

Part\#	214215
Input V	$115 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$
Output V	90 V DC
Output A	$2 \mathrm{~A} \mathrm{Max}$.
Fuse	$3 \mathrm{~A}, 250 \mathrm{VAC}$ Micro-Fuse
del D2110	
Part\#	224215
Input V	$230 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$
Output V	90 V DC
Output A	$2 \mathrm{~A} \mathrm{Max}$.
Fuse	$3 \mathrm{~A}, 250 \mathrm{VAC} \mathrm{Micro-Fuse}$

Features:

- Meets 71 Cerification
- Status/Diagnostic LED'S:

1. Green-Clutch ON
2. Red-Brake ON

- The D2100 and D2110 are protected from transient high voltage spikes with MOV technology.

Optional Parts:
Part\# 65-22-3
8 Pin Octal Socket
Part\# 32-1-11 (Pack of 5)
3 A, 250 VAC (2 AG) F/A Micro-Fuse

Wiring Diagram
For Clutch and or Brake

Notice: Use wire and methods in accordance with Local, State, and National Electric Codes (NEC).

Dynatec ${ }^{\circledR}$ Controls

Dynatec ${ }^{\circledR}$ D2101 and D2111

Plug-in Clutch/Brake Controls

Dynacorp ${ }^{\circledR}$ D2101 Control Part\# D6001-448-004 (115 VAC Input) Dynacorp ${ }^{\circledR}$ D2111 Control Part\# D6001-448-006 (230 VAC Input)

Description:

The Dynatec ${ }^{\circledR} 2101$ (D2101) and 2111 (D2111), are plug-in controls, designed to mount into an eight pin octo-socket. The D2101 and the D2111 are engineered to operate a 90 V DC clutch and/or brake coil with current loads up to 2.0 amps. The compact plug-in design allows for ease of installation and replacement.
The D2101 and D21 11 are fused on both input power lines to protect the controller system. These controls incorporate voltage protection on the AC input to suppress transient spikes, present on some power lines.

Specifications:

Model D2101

Part\#
Input V
Output V
Output A Fuse
Model D2111
Part\# Input V Output V Output A Fuse

D6001-448-004
115 VAC $50 / 60 \mathrm{~Hz}$
90 V DC
2 A Max.
3 A, 250 VAC Micro-Fuse

D6001-448-006
230 VAC $50 / 60 \mathrm{~Hz}$
90 V DC
2 A Max.
3 A, 250 VAC Micro-Fuse

Features:

- Meets CII Certification
- Status/Diagnostic LED'S:

1. Green-Clutch ON
2. Red-Brake ON

- The D2101 and D2111 are protected from transient high voltage spikes with MOV technology.

Optional Parts:

Part\# 65-22-3
8 Pin Octal Socket
Part\# 32-1-11 (Pack of 5)
3 A, 250 VAC (2 AG) F/A Micro-Fuse

Wiring Diagram
For Clutch and or Brake

Notice: Use wire and methods in accordance with Local, State, and National Electric Codes (NEC).

Base (Part \# 65-22-3) ordered separately

Tor
Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.camil sales@electromate.com

Dynatec ${ }^{\circledR}$ Controls

Dynatec ${ }^{\circledR} 2650$ Control

Dual Channel Anti-Overlap

Torque Adjust Clutch/Brake Control

Description

The Dynatec ${ }^{\circledR} 2650$ (D2650) is a solid-state anti-overlap clutch/ brake controller, engineered to operate 90 VDC clutch/brake (C/B) coils with current loads up to 1.0 amp ; Din rail mounting for ease of installation.
This controller operates one or two coils, incorporating adjustable output voltage (torque) for each channel and anti-overlap circuit.
The D2650 incorporates voltage protection on the AC input. When transient voltage spikes or notching is present on AC lines, an isolation transformer is required to filter the incoming power to the D2650.

Features

- Meets CII Certification
- Anti-Overlap Circuit
- Dual Output Torque (Voltage) Adjustment
- 115 VAC Input
- Selective Input Switching Logic - 115 VAC
- Status/Diagnostic LED'S:

1. Clutch ON
2. Brake ON

Input Logic	Part No.
$115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	$214237-040-2233$

D2650 Anti-Overlap

When using conventional controls where the output voltage is switched by a relay contact, overlap occurs when you see the arching across the contacts. This indicates that just for an instant the brake and clutch are both engaged. This graph represents overlap. The effect of this is excessive wear and heat to the clutch/brake system.

Clutch/Brake Shaft RPM Curve using Conventional Control
The Dynatec ${ }^{\circledR} 2650$ incorporates MOV's and time delay logic that will prevent the effects of overlap. This graph illustrates the effects of anti-overlap. Notice the difference between the RPM curves. You have a shorter time to speed and time to zero, and the switching is more precise, creating less heat. These controls can actually operate the clutch/brake system at higher cycle rates, with better repeatability and less heat than conventional controls.

Clutch/Brake Shaft RPM Curve using Dynacorp® Control with Anti-Overlap

D2650 Wiring Information

Dynacorp® Clutch/Brake Package Wiring

Single Clutch and Brake Wiring

[^0]: * Warner ${ }^{\circledR}$ Interchange

