

Precision Linear Motion Products Catalog and Design Guide

Leadscrews

Anti-Backlash Nuts

Custom Leadscrew Assemblies

Can-Stack Linear Actuators

C ELECTROMATE

Hybrid Linear Actuators LRS™ Motorized Linear Rail Systems

ScrewRail® Assemblies RGS[®] Rapid Guide Screws Spline Shafts, Slides and Linear Guides

Pancake Low Profile Stepper Motors

HaydonKerk Motion Solutions™

80000 Series Pancake Stepper Motors with very low profiles and high torque

80000

Series

Drawing

Dimensional

22.21 0

[4.75±0.03]

Ø.187±.001

Ø.875^{+.000}-.003

-0.08.

The Haydon[™] 80000 Series stepper motor is designed for applications where accurate positioning, high torque and very thin packaging are desirable characteristics. This motor has a maximum diameter of 3.15-in (80 mm) and is less than 1/2-in (12.7 mm) thick.

Typical two-phase can-stack motors have coils mounted alongside each other, requiring a certain minimum thickness.

This pancake motor features a patented design, in which one coil is mounted inside the other. The motor's permanent magnet rotor is a ring that is located in between the coils.

Applications include business machines, computer peripherals and industrial equipment and automation. Accommodations can be made for configurations that require unipolar coils, special shafts and other mountings.

 $[15.88\pm0.38]$

.625±.015

[1.91]

.08

[12.73] .50

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

ELECTROMATE

Sold & Serviced By:

Salient Characteristics

Ø 80 mm (3.15-in) Pancake Stepper			
Part number	80240-12		
Wiring	Bipolar (Unipolar optional)		
Step angle	3.75°		
Winding voltage	12 VDC		
Current/phase	.50 A		
Resistance/phase	24 Ω		
Inductance/phase	24 mH		
Hold torque	20 oz-in (14.12 Ncm)		
Power consumption	12 W		
Rotor Inertia	120 gcm ²		
Weight	7.75 oz (220 g)		
Insulation resistance	20 MΩ		
Temperature rise	90°F Rise (50°C Rise)		
Bearings	Radial Ball		

NOTE: Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

HaydonKerk Motion Solutions[™] ·

0.75-in (20 mm) height, 3.15-in (80 mm) sq. and 100 oz.-in. (70 Ncm) of torque

Part modified to illustrate gearing. Actual gears are not exposed in standard packaging.

For a given size motor, the larger the rotor the greater the torque. HaydonKerk Motion Solutions[™] provides an advanced, compact, low profile pancake stepper motor with a specially engineered, rotor-embedded, single-stage planetary gear train...designed to meet or exceed your most demanding small space high-torque applications.

Salient Characteristics

Ø 80 mm (3.15-in.) Planetary Gear Train			
Paricake Stepper Motor			Code
Part number	80GHX – V – Z		
Wiring (Part # code Z)	Bipolar		Z = 42
Gear Ratios/Step angle (Part # code X)	4:1 = 0.9375°		X = 04
Winding voltage (Part # code V)	5 VDC		V = 05
		12 VDC	V = 12
Current/phase	1.4 A	.58 A	
Resistance/phase*	3.6 Ω	20.6 Ω	
Step Angle	3.75		
Insulation resistance	20 mΩ		
Power consumption	14 W		
Weight	12 oz (343 g)		
Temperature rise	90°F Rise (50°C Rise)		
Travel Direction	Reversible		
Bearings	Radial Ball		

*±10% at 25°C (77°F) ambient

Planetary Gear Train Components

Planetary Gear Train Performance Curves

Torque vs Full Step/Second • 4:1 Gear Ratio

NOTE: Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

Page numbers represent Printed Catalog pages