Harmonic Planetary®

HPG Series Planetary Gearhead

HRG-32A-05-J6

11

HARMONIC DRIVE

Total Motion Control

10

HPG-324-05-F0

100


Harmonic Drive LLC

is the world's largest manufacturer of strain wave gearing and motion control systems, with an installed base of over 4 million products worldwide. Known for its high precision, zero backlash Harmonic Drive[™] products, Harmonic Drive LLC was a pioneer in developing high precision mechanical drive products to complement the growing use of high accuracy servo and stepper motors in motion control. With its new, unique Harmonic Planetary[®] gearhead, Harmonic Drive LLC continues to lead the way in innovative, precision motion products.

Harmonic Drive LLC products are used everywhere precision motion is needed, including semiconductor equipment, robotics, and even space applications. HPG is manufactured in the company's 150,000 square foot, ultramodern facility in Nagano, Japan, and then assembled to exact customer specifications in the US headquarters located in Peabody, MA. Both facilities are ISO 9001 certified. Complete application engineering, custom design, customer service, and technical support are provided in the United States.

The NEW Harmonic Planetary® Low Backlash For Life

The new Harmonic Planetary[®] gearhead is a revolutionary new design in planetary gearheads. The innovative Ring Gear automatically adjusts for backlash, ensuring consistent, low backlash for the life of the gearhead. Harmonic Drive LLC's experience in designing and producing precision strain wave gearing was used to design a unique ring gear. This ring gear acts as a "backlash buffer," as it automatically provides the optimum backlash in the planetary gear train. As compared to other planetary designs, where gear wear increases backlash over time, the Harmonic Planetary[®] maintains the same low backlash for the life of the gearhead. The design engineer is ensured of consistently low backlash, without the annoying "backlash creep" of other designs.

HPG Series Harmonic Planetary [®] Gear	4
System Components	5
Principle of Operation	6
Application Examples	7
Rating Table	8
How to use the Rating Table	8
Dimensions	9
Accuracy Definitions	13
Accuracy Data	13
Torsional Stiffness	14
No-load Starting Torque	
No-load Back Driving Torque	
No-load Running Torque	15
Efficiency	15
Motor Assembly	20
Assembly of the Housing and Output Flange	20
Lubrication	20
Performance Data for the Output Bearing	21
Calculation of the Permissible Static Tilting Moment	21
Output Bearing Life	22
Life of Output Bearing for Oscillating Motion	24
Output Bearing Tolerances	24
Selection Procedure	25
Selection Example	26
Ordering Code	27

The outstanding feature of the new HPG series precision planetary gears is the innovative ring-gear. This is the result of Harmonic Drive LLC's engineering and manufacturing know-how. By using a new ring-gear design, the planetary gears achieve a backlash level of less than 3 arc-min without requiring an additional backlash adjustment mechanism. In addition, a backlash level of less than 1 arc-min is available as an option.

Until now highly accurate gears and an additional adjustment mechanism were necessary to minimize backlash. Tight gear engagement for conventional planetary gears leads to torque ripple and an increase in of noise and wear. To avoid this problem the new HPG series features a unique internally toothed ring-gear, thereby exploiting many years of Harmonic Drive LLC experience. The ring-gear ensures that backlash is minimized and that all planet gears share the load equally.

Sold & Serviced By:

ELECTROMATE

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099

www.electromate.com

Backlash less than 1 arc-min

By using an innovative ring-gear, backlash of less than 1 arc-min can be achieved without requiring an additional backlash adjustment mechanism.

High moment stiffness

The very compact and very stiff cross-roller output bearing provides the planetary gears with a high moment stiffness and excellent running tolerances at the output flange.

High efficiency

As a result of the optimized tooth profile efficiencies of more than 90 % can be achieved.

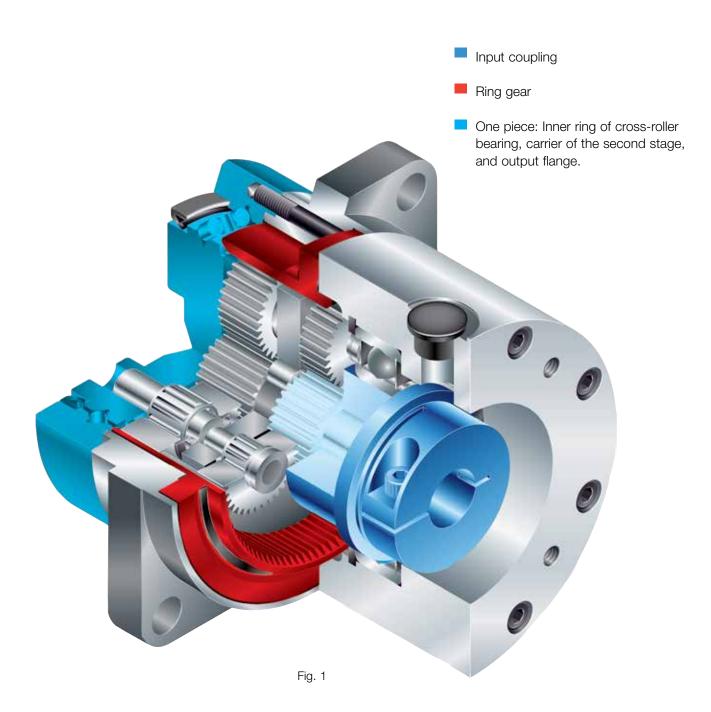
Repeatability better than 20 arc-sec

The highly precise components and the automatic backlash compensation mechanism afforded by the ring gear design provide a repeatability better than ± 20 arc-sec.

Easy motor assembly

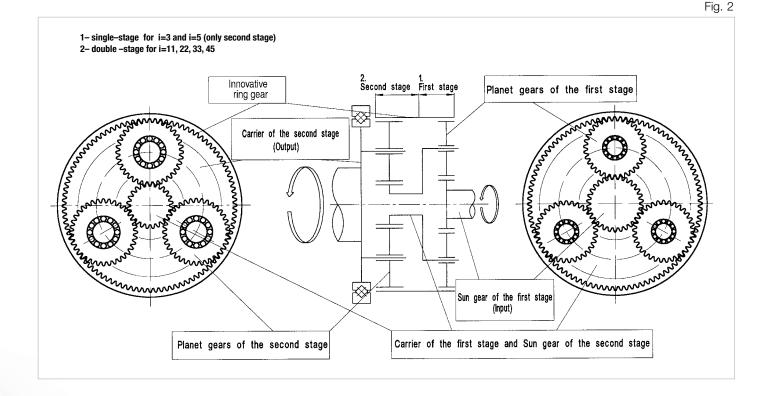
The supported motor shaft coupling and the variable adapter flange guarantee an extremely rapid and easy motor assembly.

Reduction ratios between 3:1 and 45:1

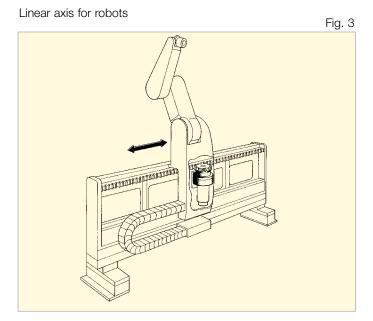

A selection of reduction ratios (3:1, 11:1, 21:1, 33:1 and 45:1) allows a wide range of output torque and speed.

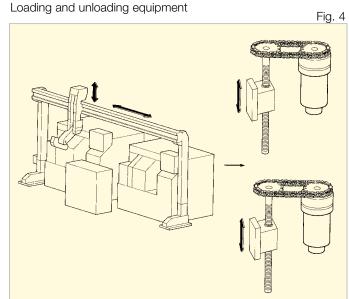
Flange or Shaft Output Configuration

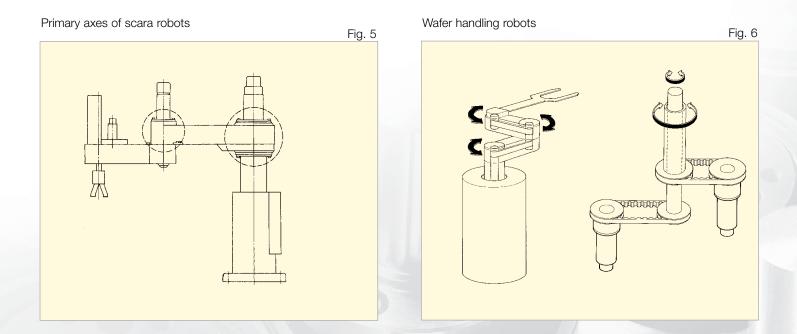
The HPG is available in either configuration to provide convenient methods to attach the output load.



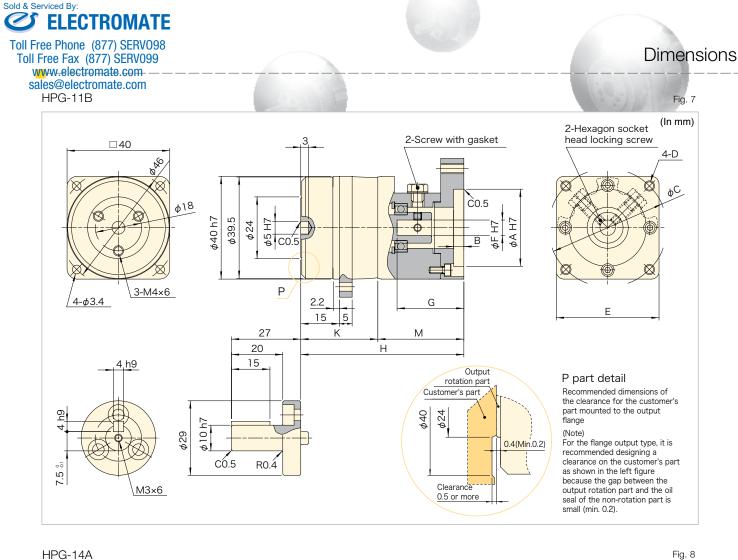
System Components


Principle of Operation

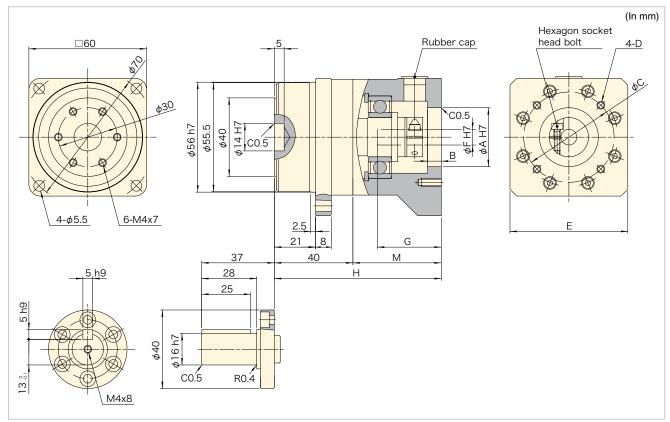




For double-stage HPG gears the sun gear of the first-stage planetary gear is connected to the motor shaft. The input torque from the motor is transmitted to three equally spaced planet gears. The ring gear is connected to the fully floating sun gear of the first stage is connected to the fully floating sun gear of the second planetary stage. This also features three equally spaced planet gears, which engage with the deformable region of the ring gear. The carrier of the second stage, which acts as output element, is integrated with the flange and inner ring of the output-side cross roller bearing. The direction of rotation of the input shaft and output flange/shaft are the same. For single-stage HPG gears the complete first stage as described above is absent and the sun gear of the second stage is connected directly to the motor shaft.

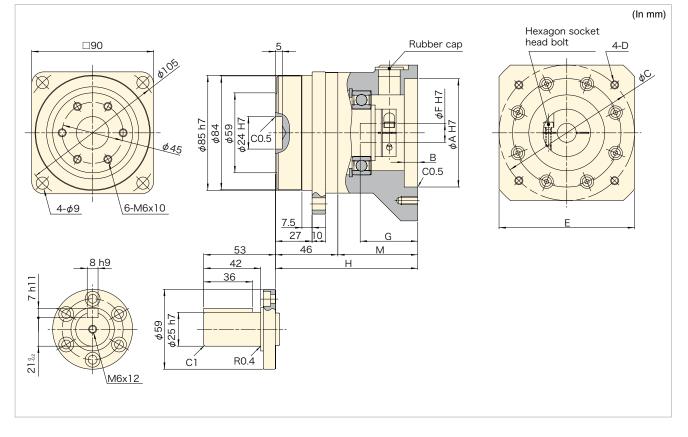

Sold & Serviced By: **C** ELECTROMATE Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 - www.electromate.com- sales@electromate.com

Rating Table


Max. Maximum									50105	SUICOU	romate.												
Size	Gear Ratio	Rated To 3000r		Limit for Torq	Average ue *2	Limit for F Peak To		Limit for tary To		Average Input Speed *5	Max. Input Speed *6 (grease)		Moment o	f Inertia	*7		Weig	jht *8					
												Gear head	s w/Output	Input S	haft Type w/ Dutput		eads w/ tput	Input Sha Ou	aft Type w/ tput				
		Nm	lb-in	Nm	lb-in	Nm	lb-in	Nm	lb-in	r/min	r/min	Shaft X 10 -4 kg.m2	Flange X 10 -4 kg.m2	Shaft X 10 -4 kg.m2	Flange X 10 -4 kg.m2	Shaft kgf	Flange kgf	Shaft kgf	Flange kgf				
	5	2.5	22	5	44	7.8	69					0.0036	0.0021			0.10	0.14						
	9	2.5	22	3.9	35	3.9	35					0.0012	0.0007			0.18	0.14	-	-				
11	21	3.4	30					20	177	3,000	10,000	0.0019	0.0018	-	-								
	37	3.4	30	6	53	9.8	87					0.00068	0.00066			0.24	0.20	-	-				
	45	3.4	30									0.00049	0.00048										
	3	2.9	26	6.4	57	15	133	37	327		5,000	0.077	0.059	0.120	0.110	0.50	0.40	0.80	0.70				
	5	5.9	52	13	115							0.026	0.020	0.073	0.067								
	11	7.8	69							3,000		0.019	0.018	0.059	0.058								
14	15	9	80			23	204	56	56 496		6,000	0.017	0.016	0.057	0.056				0.80				
	21	8.8	78	15	133							0.0092	0.0089	0.049	0.049	0.60	0.50	0.90					
	33	10	89									0.0030	0.0029	0.043	0.043								
	45	10	89	10	100	0.4	500	104	1 007		1.000	0.0028	0.0027	0.043	0.043								
	3	8.8	78	19	168	64	64	64	64	64	566	124	1,097		4,000	0.57	0.46	0.80	0.69	1.6	1.2	2.4	2.0
	5	16 20	142 177	35 45	310 398					3,000		0.21 0.16	0.17 0.15	0.44 0.32	0.40 0.31				2.1				
20	15	20	212	43 53	469							0.10	0.13	0.32	0.30	1.8							
20	21	24	212	55	409	100	885	217	1,920		6,000	0.14	0.14	0.30	0.23		1.4	2.7					
	33	29	257	60	531							0.024	0.023	0.20	0.20	1.0	1.4	2.1					
	45	29	257	60	531							0.024	0.020	0.18	0.18								
	3	31	274	71	628	225	1,991	507	4,487		3,600	2.8	2.0	4.2	3.4								
	5	66	584	150	1,328		.,		.,		-,	1.0	0.73	2.4	2.2	4.3	2.9	6.3	4.9				
	11	88	779		,			5 650	650 5,753	3 3,000		0.84	0.78	2.0	1.9	4.9							
32	15	92	814	170	1,505						3,000 6,000	0.65	0.62	1.8	1.8								
	21	98	867			300	2,655					0.36	0.34	1.5	1.5		3.5	6.9	5.3				
	33	108	956	200	1,770							0.13	0.12	1.3	1.3			0.0					
	45	108	956	200	1,770							0.12	0.11	1.3	1.3								
	3	97	858	195	1,726	657	5,814				3,000	17	13	21	18	10	10						
	5	170	1,505	340	3,009							6.1	4.8	11	9.2	13	10	17	14				
	11	200	1,770	400	3,540							3.6	3.3	7.4	7.1								
50	15	230	2,036	450	3,983	850	7,523	1 950	16 272	2 000	4,500	3.1	2.9	6.8	6.7								
	21	260	2,301			000	7,525	1,850	16,373	2,000	4,500	1.7	1.6	5.5	5.4	15	12	19	16				
	33	270	2,390	500	4,425							0.63	0.6	4.4	4.3								
	45	270	2,390									0.59	0.6	4.3	4.3								
	4	500	4,425	900	7,965						2,500	(42) *9	28			(32) *9	22						
	5	530	4,691	1,000	8,850							(27) *9	18			*9		-	-				
	12	600	5,310	1,100	9,735	2,200	19,470					(18) *9	17										
65	15	730	6,461	1,300	11,505	,30	,	4,500	39,825	2,000		(17) *9	16										
	20	800	7,080		13,275				,		3,000	(7.1) *9	6.5	-	-	(47) *9	37		-				
	25	850	7,523	1,500	13,275							(6.5) *9	6.1			9	37	-					
	40	640	5,664		11,506		16,816					(1.5) *9	1.3										
	50	750	6,638	1,500	13,276	2,200	19,472			ical rated speed c		(1.3) *9	1.2										

*1: Rated torque is based on an L10 life of 20,000 hours with an input speed of 3,000 rpm, which is the typical rated speed of servo motors. Rated input speed for sizes 50 Keyence and 65 are 2,000 rpm.
*2: The limit for average torque is calculated based on the load torque pattern.
*3: The limit for torque esen during start and stop cycles.
*4: The limit for torque resulting from an emergency stop or from external shock loads. Always operate below this value. Calculate the permissible number of events to assure it meets the required operating conditions (see equation 22, page 21).
*5: Maximum instantaneous input speed.
*6: Maximum is the depends on the operating environment, but it is the limiting value for the continuous operating speed or the average input speed of a motion profile. Average input speed is limited due to heat generated in the reducer.

7: Inertia value is for the gearhead only.
78: The weight is for the gearhead only (without input shaft coupling & motor flange).
79: Flange output is standard for the size 65 gearhead. Shaft type (J2 & J6) is available by special order only.


HPG-14A

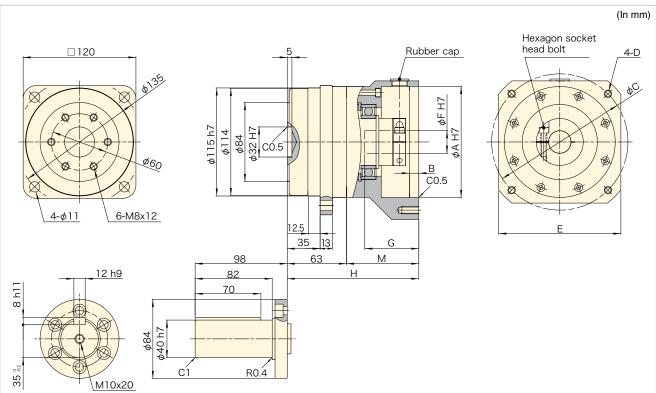
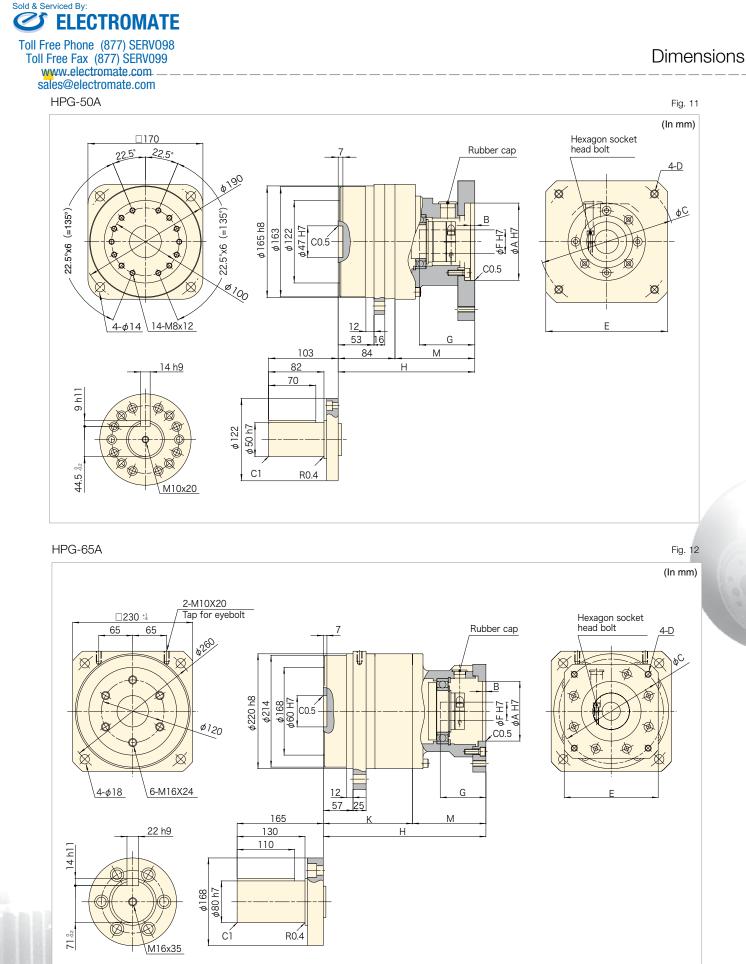
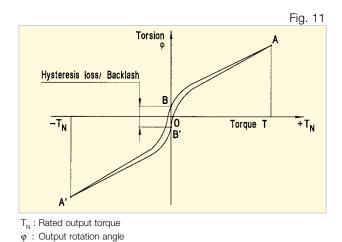

Dimensions A, B, C, D, E, F, G, H depend on the chosen motor/adapter flange combination. Contact Harmonic Drive LLC for details.

Fig. 10

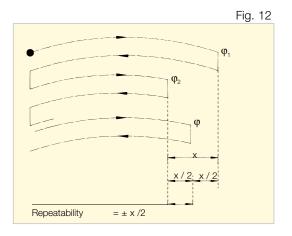

HPG-20A

HPG-32A



Dimensions A, B, C, D, E, F, G, H depend on the chosen motor/adapter flange combination. Contact Harmonic Drive LLC for details.

* While the flange output is for standard, the shaft output is for special specification.

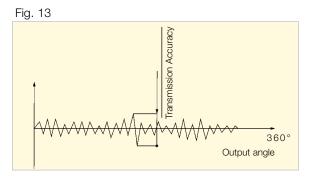


When a torque is applied to the output of a Harmonic Planetary[®] Gear HPG with the input rotationally locked, the torque-torsion relationship measured at the output typically follows the hysteresis curve 0-A-B-A'-B'-A, as shown in Fig. 11.

The value of the displacement B-B' is defined as the hysteresis loss or backlash.

Repeatability (linear representation)

The repeatability of the gear describes the position difference measured during repeated movement to the same desired position from the same direction. The repeatability is defined as half the value of the maximum difference measured, preceded by $a \pm sign$, as shown in Fig. 12.



Accuracy Definitions

Transmission Accuracy (linear representation)

The transmission accuracy of the gear represents a linearity error between input and output angle. The transmission accuracy is measured for one complete output revolution using a high resolution measurement system. The measurements are carried out without direction reversal. The transmission accuracy is defined as the sum of the maximum positive and negative differences between theoretical and actual output rotation angle, as shown in Fig. 13.

Accuracy Data

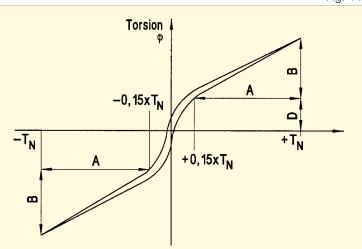
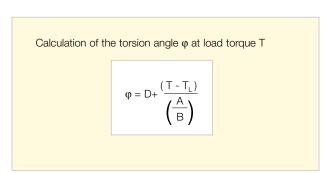

	Accuracy of HPG Harmonic Planetary [®] Gears									
Size	Hysteresis Loss Backlash [arc min]		Repeatability [arc sec]	Transmission Accuracy [arc min]						
	Standard BL3	Optional BL1								
11	3	-	< <u>+</u> 30	< 5						
14	3	1	< <u>+</u> 20	< 4						
20	3	1	< <u>+</u> 15	< 4						
32	3	1	< <u>+</u> 15	< 4						
50	50 3 1		< <u>+</u> 15	< 3						
65	3	1	< <u>+</u> 15	< 3						

Fig. 14

The torsional stiffness may be evaluated by means of the torque-torsion curve shown in Fig. 14. The values quoted in table 3 are the average of measurements made during numerous tests.


Table 3

		A	D [arc-min]						
Size	Iorsional S	Stiffness = $\frac{\pi}{B}$		Backlash	n Class				
GIZO			BL	_3	BL1				
	[Nm/min]	[Nm/rad]	i = 5	i > 5	i = 5	i > 5			
11	0.68	2,200	2.5	3.0	-	-			
14	1.4	4,700	2.2	2.7	1.1	1.7			
20	5.4	18,500	1.5	2.0	0.6	1.1			
32	22.0	74,100	1.3	1.7	0.5	1.0			
50	140	470,000	1.3	1.7	0.5	1.0			
65	380	1,300,000	1.3	1.7	0.5	1.0			

 $\frac{A}{B}$: Torsional stiffness

 $\rm T_{\rm N}$: Rated Torque; Tab.1 D: Average torsion angle at 0.15 x $\rm T_{\rm N}$

φ: Output rotation angle

- D: [min] (Fig. 14)
- T : Load torque -[Nm]
- T_L: T_N x 0,15 [Nm]
- $\frac{A}{B}$: Torsional stiffness [Nm/min]; Tab. 3

Table 4

Size	Ratio	No-load starting torque	No-load* running torque at 3000 rpm	No-load back driving torque
		Ncm	Ncm	Nm
	5	4.0	5.0	0.20
	9	3.7	2.5	0.33
11	21 37	2.9 1.6	1.3 0.90	0.60 0.60
	45	1.4	0.90	0.64
	3	14	21	0.43
	5	8.6	10	0.43
	11	8.0	5	0.90
14	15	7.4	3	1.1
	21	5.2	3	1.1
	33	3.3	2	1.1
	45	2.4	2	1.1
	3	31	50	0.93
	5	18.6	28	0.93
00	11	15.1	15	1.7
20	15 21	12 9.3	11 9	1.8 2.0
	33	6.4	9	2.0
	45	4.7	5	2.1
	3	56	135	1.7
	5	33.3	73	1.7
	11	26.7	38	2.9
32	15	25	29	3.7
	21	22.4	24	4.7
	33	15	14	4.8
	45	11	13	5.1
	3	134	250	4.0
	5	80	130	4.0
50	11 15	45 40	60 47	5.0
50	21	36	47	6.0 7.6
	35	24	24	7.8
	45	24	24	8.9
	4	288	420	12
	5	240	360	12
	12	125	190	15
65	15	110	160	17
	20	95	130	19
	25	84	110	21
	40	75	76	30
	50	70	64	35

No-load Starting Torque

The no-load starting torque is the torque required to start rotation of the input element (high speed side) with no load applied to the output element (low speed side), see Table 4.

No-load Running Torque

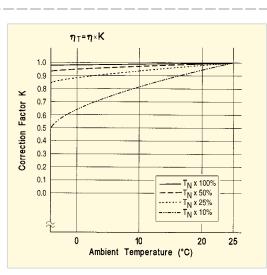
The no-load running torque is the torque required to maintain rotation the input element (high speed side) at a defined input speed with no load applied to the output.

No-load Back Driving Torque

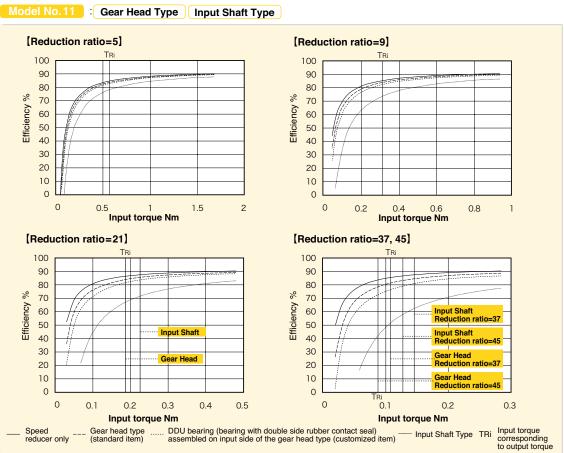
The no-load back driving torque is the torque required to start rotation of the output element (low speed side) with no load applied to the input element (high speed side).

The approximate range for no-load back driving torque, based on tests of actual production gears, is shown in Table 4. In no case should the values given be regarded as a margin in a system that must hold an external load. A brake must be used where back driving is not permissible.

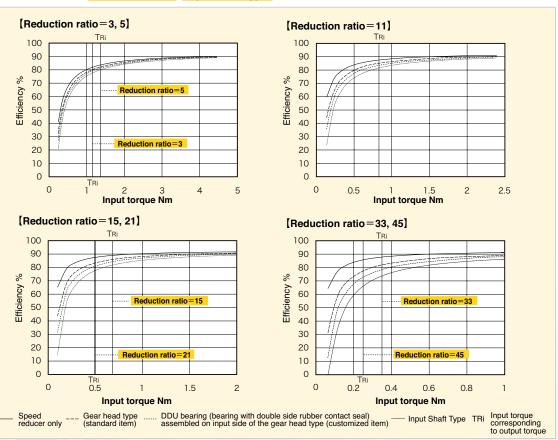
All values refer to a gear at an operating temperature of +25 °C. * For Backlash Class BL1 the values increased by 20%.


Efficiency

The efficiency curves are mean values, which are valid for the following conditions: Input Speed: n = 3000 rpm Ambient Temperature: 25 °C Lubrication: Size 14A~32A - Grease SK-2 Size 50A - EPNOC AP(N)2 Backlash Class: BL3 (for BL1 efficiency

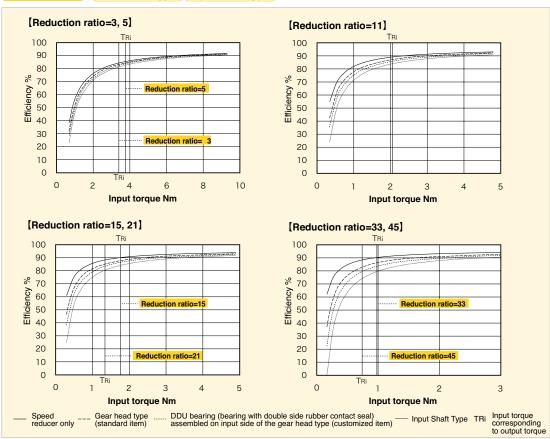

approx. 2% lower)

In case of an ambient temperature below 25°C the efficiency η_{τ} can be determined using equation 2, and figure 15. Efficiency η is found from figures 16~19.

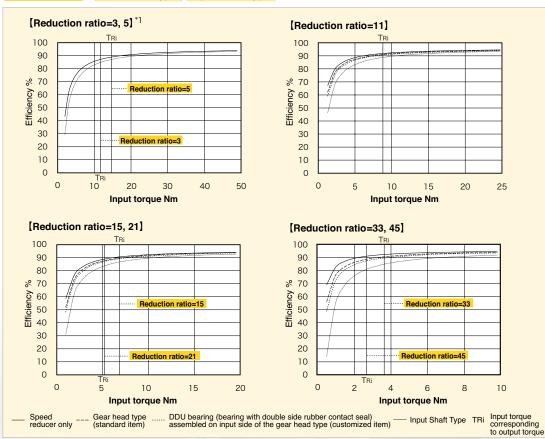


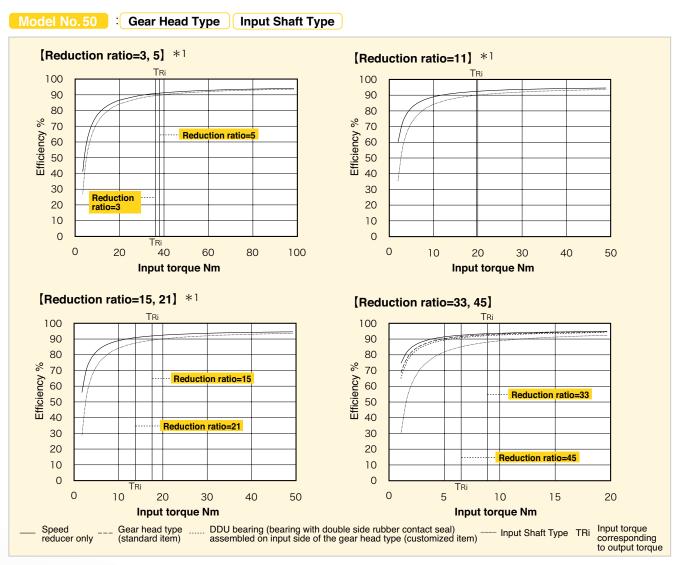
Sold & Serviced By: ELECTROMATE Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

Model No. 14 Gear Head Type Input Shaft Type

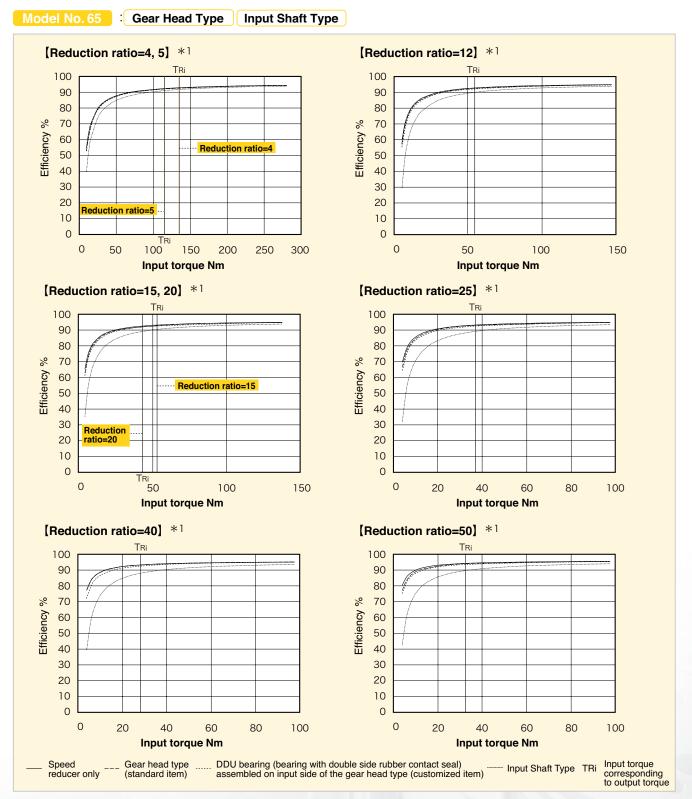


16


Sold & Serviced By: ELECTROMATE Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com



Model No. 32 Gear Head Type Input Shaft Type



*1 Only one line is shown in graphs because the difference between the speed reducer and a bearing assembled on the input side is small.

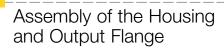
Sold & Serviced By: ELECTROMATE Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

*1 Only one line is shown in graphs because the difference between the speed reducer and a bearing assembled on the input side is small.

*1 Only one line is shown in graphs because the difference between the speed reducer and a bearing assembled on the input side is small.

Fig. 20

1 B


Motor Assembly

- To connect a motor to a HPG Series gear please follow the following instructions:
- f 1 Turn the coupling on the input side so that the head of the bolt aligns with the bore for the rubber cap.
- 2 Apply Loctite[®] 515 (or equiv.) sealant on mating surface of Gearhead adapter.
- 3 Gently insert the motor into the gear.
- 4 Fix the motor and gear by tightening the bolts on the flange (see Table 5).
- 5 Fasten the bolt on the input coupling (see Table 6).
- 6 Finally, insert the rubber cap provided.

Table 5

Bolt Size	M2.5	M3	M4	M5	M6	M8	M10	M12
Tightening Torque [Nm]	0.59	1.4	3.2	6.3	10.7	26.1	51.5	89.9

Bolt Size	M3	M4	M5	M6	M8	M10	M12
Tightening Torque [Nm]	2.0	4.5	9.0	15.3	37.2	73.5	128

Fig. 12

Assembly of the Housing

When installing the HPG in a machine, please ensure that the assembly surfaces are flat and the tapped holes are free of burrs.

818

Ø

Ø

Table 7

Size	HPG-11A	HPG-14A	HPG-20A	HPG-32A	HPG-50A	HPG-65A
Number of Bolts	4	4	4	4	4	4
Bolt Size	M3	M5	M8	M10	M12	M16
Bolt pitch diameter [mm]	46	70	105	135	190	260
Tightening Torque [Nm]	1.4	6.3	26.1	51.5	103	255
Torque transmitting capacity [Nm]	26.3	110	428	868	2030	5180

Assembly of the Output Flange

When connecting the load to the output flange please observe the specifications for the output bearing given on page 17.

Table 8

Size	HPG-11A	HPG-14A	HPG-20A	HPG-32A	HPG-50A	HPG-65A
Number of Bolts	3	6	6	6	14	6
Bolt Size	M4	M4	M6	M8	M8	M16
Bolt pitch diameter [mm]	18	30	45	60	100	120
Tightening Torque [Nm]	4.5	4.5	15.3	37.2	37.2	319
Torque transmitting capacity [Nm]	19.0	63	215	524	2036	4480

Please note:

The flange is sealed against oil leakage. It is therefore not necessary to apply additional sealing liquid.

Lubrication

HPG Planetary Gears are delivered grease-packed. An additional grease lubrication is not necessary, either during assembly or during operation. Applied lubricant: 14A~32A: Harmonic Drive™ Grease type SK-2. 50A: EPNOC AP(N)2 Nippon Oil Company

Ambient temperature range: -10°C up to +40°C. Maximum operating temperature: + 80°C

Performance Data for the Output Bearing

HPG Planetary Gears incorporate a high stifness cross-roller bearing to support output loads. This specially developed bearing can withstand high axial and radial forces as well as high tilting moments. The reduction gear is thus protected from external loads, enabling a long service life and consistent performance. The integration of an output bearing also serves to reduce subsequent design and production costs, by removing the need for additional output bearings in most applications. Furthermore, installation and assembly of the reduction gear is greatly simplified.

Checking procedure

(1) Checking the maximum load moment load (Mmax)
Obtain the maximum load moment load (Mmax).
Maximum load moment load (Mmax) ≤ Permissible moment (Mc)
(2) Checking the life
Obtain the average radial load (Frav) and the average axial load (Faav).
Obtain the radial load coefficient (X) and the axial load coefficient (Y).
Calculate the life and check it.
(3) Checking the static safety coefficient
Obtain the static equivalent radial load coefficient (Po).
Check the static safety coefficient. (fs)

Specification of output-side main bearing

The specification of the crossed roller bearing is supplied in Table 1.

Table 1 Specification of HPG main bearing

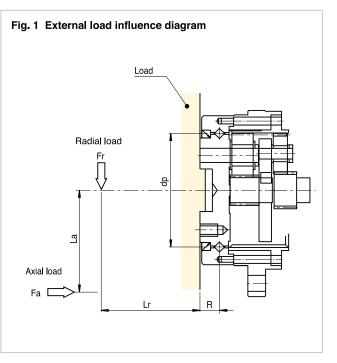
	Circlar Pitch of roller	Offset Amount	Basic Rate	ed Load	Permissible Moment Load Mc *3	Moment Stiffness Km	
Model	dp	R	Basic dynamic rated load C *1 Basic static rated load Co *2		Nm	×104	
	m	m	Ν	Ν		Nm/rad	
11	0.0275	0.006	3116	4087	9.50	0.88	
14	0.0405	0.011	5110	7060	32.3	3.0	
20	0.064	0.0115	10600	17300	183	16.8	
32	0.085	0.014	20500	32800	452	42.1	
50	0.123	0.019	41600	76000	1076	100	
65	0.170	0.023	90600	148000	3900	364	

Model	Reduction	Permissible Radial Load*4	Permissible Axial Load *4
woder	Ratio	Ν	Ν
	5	280	430
	9	340	510
11	21	440	660
	37	520	780
	45	550	830
	3	400	600
	5	470	700
	11	600	890
14	15	650	980
	21	720	1080
	33	830	1240
	45	910	1360
	3	840	1250
	5	980	1460
	11	1240	1850
20	15	1360	2030
	21	1510	2250
	33	1729	2580
	45	1890	2830

Model	Reduction	Permissible Radial Load*4	Permissible Axial Load *4
woder	Ratio	Ν	Ν
	3	1630	2430
	5	1900	2830
	11	2410	3590
32	15	2640	3940
	21	2920	4360
	33	3340	4990
	45	3670	5480
	3	3700	5570
	5	4350	6490
	11	5500	8220
50	15	6050	9030
	21	6690	9980
	33	7660	11400
	45	8400	12500
	4	8860	13200
	5	9470	14100
	12	12300	18300
	15	13100	19600
65	20	14300	21400
	25	15300	22900
	40	17600	26300
	50	18900	28200

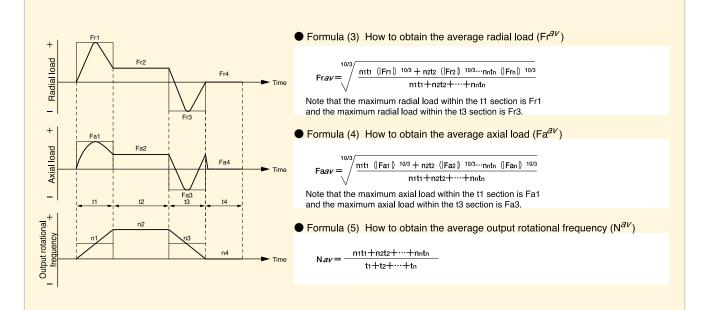
1. (4)

How to obtain the maximum load moment load


Maximum load moment load (Mmax) is obtained as follows. Make sure that Mmax \leq Mc.

1 <i>max</i> =Fr <i>max</i> (Lr+F	R) +Fa <i>max</i>	· La
ormula (1)		
()	N (kaf)	See Fig. 1.
Max. axial load	N (kgf)	See Fig. 1
	m	See Fig. 1.
Offset amount	m	See Fig. 1 and Table 1.
	ormula (1) Max, radial load Max. axial load	Max. radial load N (kgf) Max. axial load N (kgf) m

How to obtain the radial load coefficient and the axial load coefficient


Table 2 The radial load coefficien	t (X) and the axial load coefficient (Y)
------------------------------------	--

● Formula (2)						
	Formula	Х	Y			
Fa <i>av</i> Frav+2 (Frav(Lr+R) +Faav·La) ∕dp≦1.5				1	0.45	
Frav+2	Fa <i>av</i> (Fr <i>av</i> (Lr+R) +Fa <i>av</i> • L	0.67	0.67			
Symbol	Symbol of formula (2)					
Fr av	Avarage radial load	N (kgf)	Se	e "How to obtai	in the ave. load."	
Fa <i>av</i>	Avarage axial load	N (kgf)	Se	e "How to obtai	in the ave. load."	
Lr,La m See Fig. 1.						
R	R Offset amount m See Fig. 1 and Table 1.					
dp	dp Pitch circle m See Fig. 1 and Table 1.					

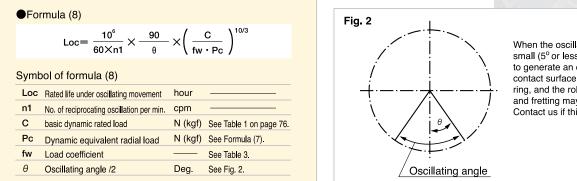
How to obtain the average load (Average radial load, average output rotational frequency

If the radial load and the axial load fluctuate, they should be converted into the average load to check the life of the crossed roller bearing.

How to obtain the life

Obtain the life of the crossed roller bearing by Formula (6). You can obtain the dynamic equivalent radial load (Pc) by Formula (7).

	$L_{10} = \frac{10^6}{60 \times Nav}$	$\left(\frac{C}{fw \cdot F}\right)$	$\overline{\mathbf{p}_{\mathbf{c}}}$) ^{10/3}
Symbo	ol of formula (6)		
L10	Life	hour	
LIU			
Nav	Ave. output speed	r/min	See "How to obtain the ave. load."
		r/min N (kgf)	
Nav	Ave. output speed		See "How to obtain the ave. load." See Table 1 on page 76. See Formula (7).

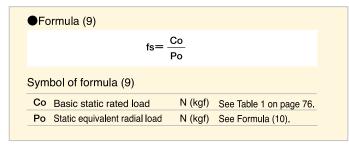

Table 3 Load coefficient

Load status	fw
During smooth operation without shock or vibration	1 to 1.2
During normal operation	1.2 to 1.5
During operation with shock and vibration	1.5 to 3

iula (7)					
$Pc = X \cdot \left(Frav + \frac{2(Frav (Lr+R) + Faav \cdot La)}{dp} \right) + Y \cdot Faav$					
l of formula (7)					
Average radial load	N (kgf)	See "How to obtain			
Average axial load	N (kgf)	the average load."			
Circlar pitch of roller	m	See Table 1 on page 76.			
Radial load coefficient		o T.I.o			
Axial load coefficient		See Table 2 on page 77.			
	m	See Fig. 1 on page 77.			
Offset amount	m	See Fig. 1 on p.77 and Table 1 on p.76.			
	$X \cdot \left(Frav + \frac{2(Frav)}{(Frav)} \right)^{2}$ I of formula (7) Average radial load Average axial load Circlar pitch of roller Radial load coefficient Axial load coefficient	$X \cdot \left(Frav + \frac{2(Frav (Lr+R) + dp}{dp} \right)$ I of formula (7) Average radial load N (kgf) Average axial load N (kgf) Circlar pitch of roller m Radial load coefficient Axial load coefficient m			

How to obtain the life under oscillating movement

Obtain the life of the crossed roller bearing under oscillating movement by Formula (8).


When the oscillating angle is small (5° or less), it is difficult to generate an oil film on the contact surface of the orbit ring, and the rolling element and fretting may be generated. Contact us if this happens.

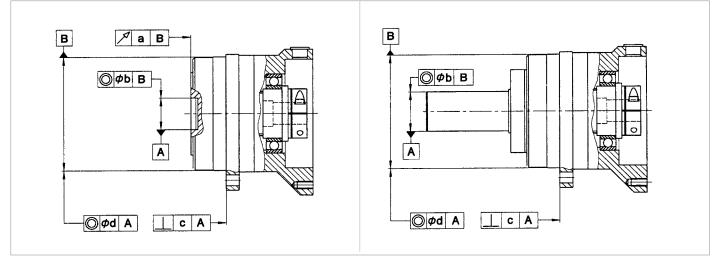
Note: When it is used for a long time while the rotation speed of the output shaft is in the ultra-low operation range (0.02r/min or less), the lubrication of the bearing becomes insufficient, resulting in deterioration of the bearing or increased load in the driving side. When using it in the ultra-low operation range, contact us.

Life of Output Bearing for Oscillating Motion

In general, the basic static rated load (Co) is considered to be the permissible limit of the static equivalent load. However, obtain the limit based on the operating and required conditions. Obtain the static safety coefficient of the roller bearing by Formula (9). General values under the operating condition are shown in Table 4. You can obtain the static equivalent radial load (Po) by Formula (10).

Table 4 Static safety coefficient

Table 13

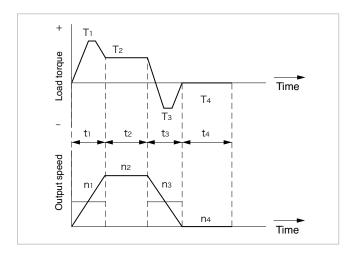

Operating condition of the roller bearing	fs
When high rotation precision is required	≧3
When shock and vibration are expected	≧2
Under normal operating condition	≧1.5

● Form	ula (10)				
$Po=Frmax + \frac{2Mmax}{dp} + 0.44Famax$					
Symbol of formula (10)					
Fr <i>max</i>	Max. radial load	N (kgf)	See "How to obtain		
Fa <i>max</i>	Max. axial load	N (kgf)	the max. load		
Mmax	Max. load moment load	Nm (kgfm)	moment load".		
dp					

Output Bearing Tolerances

Table 13	Output Dealing Tolerances [m				
Size	Run-out a	Run-out b	Perpendicularity c	Concentricity d	
11	0.020	0.030	0.050	0.040	
14	0.020	0.040	0.060	0.050	
20	0.020	0.040	0.060	0.050	
32	0.020	0.040	0.060	0.050	
50	0.020	0.040	0.060	0.040	
65	0.040	0.060	0.090	0.080	

Fig. 26

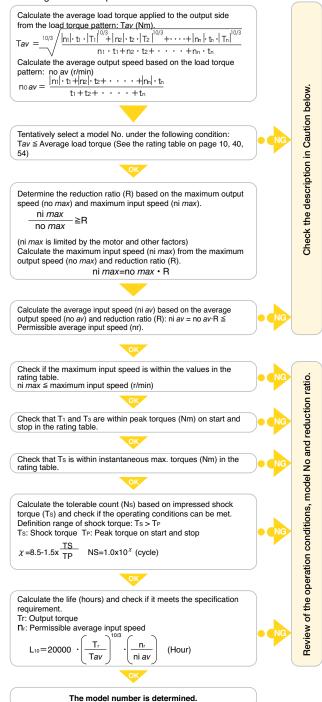

Check your operating conditions and select suitable model Nos. based on the flowchart to fully demonstrate the excellent performance of the Harmonic Planetary[®] HPG series.

Selection Procedure

In general, a servo system is rarely in a continuous constant load state. The input speed, load torque change and a comparatively large torque is applied during start and stop. Unexpected impact torques may also be applied. Check your operating conditions against the following load torque pattern and select suitable model Nos. based on the flowchart shown on the right. Also check the life and static safety factor of the crossed roller bearing and input-side main bearing (input shaft type only). (See the specification of the input-side main bearing and the output-side main bearing on pages 76 to 81.)

Checking the load torque pattern

First, you need to look at the picture of the load torque pattern. Check the specifications shown in the figure below.

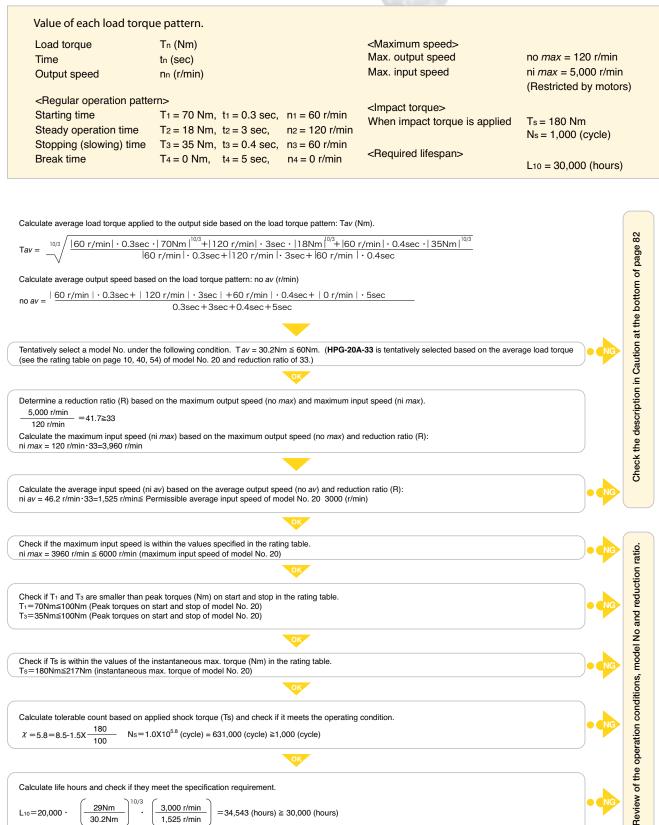


Obtain the value of each load Load torque	T1 to Tn (Nm)
Time	t1 to tn (sec)
Output speed	n1 to nn (r/min)
<normal operation="" pattern=""></normal>	
Starting time	T1, t1 n1
Steady operation time	T2, t2, n2
Stopping (slowing) time	T3, t3, n3
Break time	T4, t4 n4
<maximum rotational="" speed=""></maximum>	
Max. output speed	no <i>max</i> ≧n₁ to n _n
Max. input speed	ni <i>max</i> ≧n1xR to nոxl
(Restricted by motors)	R: Reduction ratio
<impact torque=""></impact>	_
When impact torque is applied	Ts

 $L_{10} = L$ (hours)

Flowchart of model number selection

Select a model number according to the following flowchart. If you find a value exceeding that from the ratings, you should review it with the upper-level model number or consider reduction of conditions including the load torque.



Caution

Check impacts by speed reducer temperature rise, vibration during acceleration and deceleration and other factors if the operating conditions are as specified below. Study to "increase the speed reducer size", "review the operating conditions" and other means if it becomes necessary to study safety. Exercise reasonable caution especially when operating conditions are close to continuous operation. Average load torque (Tav) > Permissible maximum value of average load torque.

Selection Example

Check if Ts is within the values of the instantaneous max. torque (Nm) in the rating table Ts=180Nm≦217Nm (instantaneous max. torque of model No. 20) Calculate tolerable count based on applied shock torque (Ts) and check if it meets the operating condition. 180 Ns=1.0X10^{5.8} (cycle) = 631,000 (cycle) ≧1,000 (cycle) $\chi = 5.8 = 8.5 - 1.5 X$ 100

Calculate life hours and check if they meet the specification requirement. 0/3

29Nm 3,000 r/min =34,543 (hours) ≥ 30,000 (hours) 30.2Nm 1.525 r/min

As a result of the preceding steps, HPG-20A-33 is determined.

 $L_{10} = 20.000$ ·

ORDERING INFORMATION

HPG -	20 -	Α-	5 -	J2	XXXX -	BL 1			
Model Name	Model No.	Design Order	Reduction Ratio	Output Configurations	Input Configuratin Code	Additional Code			
	11	B: Version	5, 9, 21, 37, 45	 (Key and tapped hole) * The shaft output of model No.65 is customized specification 	U .	Please provide the model number of the motor being	BL3 = Backlash less than 3 arc-min.		
	14		3. 5. 11, 15, 21, 33, 45		J6 = Shaft output Key and tapped hole) gearhead so we can specify a unique Harmonic Drive LLC P/N for a ready-to- mount gearhead. le sp N The shaft output of model No.65 is customized specification B G C	BL1 = Backlash of less than 1 arc-min. special specification (Size No.14 through 65)			
HPG	20		3, 5, 11, 15, 21, 33, 45			output mount gearhead. NR6 = Noise real Backlash of less	NR6 = Noise reduction Backlash of less than 6 arc-min (Size No.14		
(Harmonic Planetary®)	32	A: Version	3, 5, 11, 15, 21, 33, 45			through 50) Z = Input side bearing with double non-contact			
	50		3, 5, 11, 15, 21, 33, 45						shields D = Input side bearing with
	65		4, 5, 12, 15, 20, 25, 40, 50			double contact seals			

All products are warranted to be free from design or manufacturing defects for a period of one year from the date of shipment. Such items will be repaired or replaced at the discretion of Harmonic Drive LLC. The seller makes no warranty, expressed or implied, concerning the material to be furnished other than it shall be of the quality and specifications stated. The seller's liability for any breach is limited to the purchase price of the product. All efforts have been made to assure that the information in this catalog is complete and accurate. However, Harmonic Drive LLC is not liable for any errors, omissions or inaccuracies in the reported data. Harmonic Drive LLC reserves the right to change the product specifications, for any reason, without prior notice.