

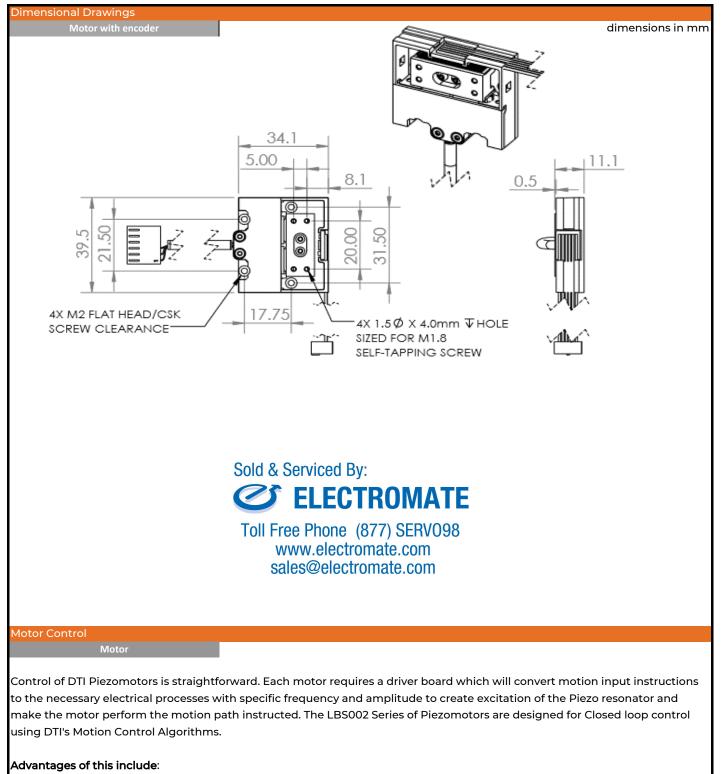
Technical Data Sheet LBS002 Series - Close Loop Linear Piezomotor System With Proprietary Motion Control Software

The LBS linear piezo motor represents a quantum leap in the design of small size high-performance DC motors. Manufactured from light weight reinforced engineering thermoplastics with a precision linear slide, this motor provides superior precision and ultrafast response/start-stop characteristics with an affordable design. Highly energy efficient, the motor consumes zero power in hold position while still providing significant force. Available in a variety of configurations (including non-magnetic) it is the ideal choice for OEM applications where superior performance and competitive unit cost are important factors.

		_
Motor Specifications	Encoder	
Mode of Operation	Stepping & Continuous	
Push/Pull Force	>2N	
Self Braking Force	>2N	
Response Time	20µs to 30µs	
Velocity Range	0.014 to 140mm/s	
Travel Range	10 mm	
Minimum Linear Step (resolution)	<0.05 μm	
Minimum controlled Linear Step	2.6 μm	
Dynamic Range	4kHz	
Bi-Directional Repeatability	±2.6 μm	
Angular Hysteresis at Direction Change	< 1.5 arc.min	
Supply Voltage for Driver	12 VDC	
Operating Temperature	-20° to 80°C	
Maximum Current over velocity range	350mA	Note
Motor Weight	25g	
Motor Dimensions (mm)	40x34x11	
Driver PCB Dimensions (mm)	48x63x25	
Control	Closed loop	

Note 1: Maximum current in continous mode. Different duty will proportionally reduce average current.

Principle of Operation


DTI's linear piezomotors work on a patented principle of excitation of ultrasonic standing waves within a piezoelectric resonator. The resulting superposition of two orthogonal ultrasonic waves causes linear movement of the motor (for more details visit www.dtimotors.com). DTI's electronic driver's have been designed to provide an economical user-control interface. Each driver PCB is supplied pre-programmed for the specific motor model and is software configurable to provide optimization of drive signals and integrated controls. Closed loop control of the motor is achieved via an optical encoder mounted on the back of the motor. Refer to the Electronic Drivier 'ED' technical data sheet for full details of Electronic Drivers.

Performance and Key benefits vs. Electromagnetic Motors

Improved Resolution:	With a control step size of just 0.05 μ m at full thrust or holding force these linear motors
	offer 20,000 steps per mm of control
Faster reaction time:	Within 20µs to 30µs the Piezomotor has made its first step and motion has commenced
	compared to a stepper motor with typical 5ms to start motion.
High Force Density	For its size and weight these motors offer superior force density, particularly when
	compared with stepper and lead screw solutions
Energy and Cost Saving	The Piezomotor consumes zero power at holding force and very low power at slow speed (
	0.06 W at 1 mm/s) yielding the possibility of very efficient overal duty.
	Is immune to EM and RF interference and emits no interference.
Special Properties	
	The innovative design and Patent protected technology packaged in stable reinforced
Economical Design	engineering thermoplastic makes this high performance technology affordable for OEM
	equipment designers
	The Piezomotor contains no copper windings, iron laminations or permanent magnets and
Lightweight	is significantly more powerful by weight than EM solutions. This makes them ideally suited
	to weight critial applications.

Increase in the range of speed control range during continuous mode operation.

Reduction in ultrasonic vibrational noise during speed control.

Substantial increase in the accuracy of speed control (speed stabilization) with external load changes.

Dramatic increase in system response time during speed stabilization

Control Options

Serial connection between Controller/PC and the serial connector on the board can be used with structured data commands being used to control the motor.

DTI Motion control Software can be used to give improved motion control with connection to the micro usb connector Or, Motor Control can be implemented with Python commands using DTI's Motor API. The API and examples are available on our GitHub.com account - https://github.com/dti-motors/Public/tree/master/Python%20API

©2020 DTI Motion Corp.	www.dtimotors.com Tel. 941-907-4444	2 of 3	ADE IN
6968 Professional Pkwy E. Sarasota, Florida 34240	info@dtimotors.com	LBS002-V3	. S. A.

trol Architecture		
	Windows OS	3rd Party controller
Motor with Encoder	Control Software to Micro USB	Motor Control with: -DTI Python API, Connection to micro USB or -Serial Port (RS232) Commands Connection to Serial input
Encoder Driver Board		Encoder Connector
Output to Serial Port		Encoder Pins
Micro USB Connector		
ering Information		
Motor		
Part Number		ncoder, 10 mm travel, 2N Force, 30 cm cable
LBS002010LAC30-EK		ncoder Evaluation Kit (2N mm travel, electronic driver , cables, 12 VDC
LBS002010LAW15-E	Linear Piezomotor with E no connector	ncoder, 10 mm travel, 2N Force, 15 cm wires,
Sol	d & Serviced By:	
		ATE
	II Free Phone (877) SERV	098
	www.electromate.com sales@electromate.com	
Electronic Driver		
EDB60V011CB	Electronic Driver pcb - Cl	osed Loop Loop board only
EDB60V011CE	Electronic Driver pcb - Cl	osed Loop, with enclosure
Refer to Electronic Driver 'ED' Data Sh electronics	eet for further information on Pi	ezomotor control techniques and driver
20 DTI Motion Corp. 3 Professional Pkwy E. Sarasota, Florida 3-		3 of 3 LBS002-V3